IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30293-9.html
   My bibliography  Save this article

Ca2+-mediated higher-order assembly of heterodimers in amino acid transport system b0,+ biogenesis and cystinuria

Author

Listed:
  • Yongchan Lee

    (Max Planck Institute of Biophysics
    Yokohama City University)

  • Pattama Wiriyasermkul

    (The Jikei University School of Medicine
    Nara Medical University)

  • Pornparn Kongpracha

    (The Jikei University School of Medicine
    Nara Medical University)

  • Satomi Moriyama

    (Nara Medical University)

  • Deryck J. Mills

    (Max Planck Institute of Biophysics)

  • Werner Kühlbrandt

    (Max Planck Institute of Biophysics)

  • Shushi Nagamori

    (The Jikei University School of Medicine
    Nara Medical University)

Abstract

Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT–rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.

Suggested Citation

  • Yongchan Lee & Pattama Wiriyasermkul & Pornparn Kongpracha & Satomi Moriyama & Deryck J. Mills & Werner Kühlbrandt & Shushi Nagamori, 2022. "Ca2+-mediated higher-order assembly of heterodimers in amino acid transport system b0,+ biogenesis and cystinuria," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30293-9
    DOI: 10.1038/s41467-022-30293-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30293-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30293-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katharina E. J. Jungnickel & Joanne L. Parker & Simon Newstead, 2018. "Structural basis for amino acid transport by the CAT family of SLC7 transporters," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Renhong Yan & Xin Zhao & Jianlin Lei & Qiang Zhou, 2019. "Structure of the human LAT1–4F2hc heteromeric amino acid transporter complex," Nature, Nature, vol. 568(7750), pages 127-130, April.
    3. Harini Krishnamurthy & Chayne L. Piscitelli & Eric Gouaux, 2009. "Unlocking the molecular secrets of sodium-coupled transporters," Nature, Nature, vol. 459(7245), pages 347-355, May.
    4. Kallol Gupta & Joseph A. C. Donlan & Jonathan T. S. Hopper & Povilas Uzdavinys & Michael Landreh & Weston B. Struwe & David Drew & Andrew J. Baldwin & Phillip J. Stansfeld & Carol V. Robinson, 2017. "The role of interfacial lipids in stabilizing membrane protein oligomers," Nature, Nature, vol. 541(7637), pages 421-424, January.
    5. Joanne L. Parker & Justin C. Deme & Dimitrios Kolokouris & Gabriel Kuteyi & Philip C. Biggin & Susan M. Lea & Simon Newstead, 2021. "Molecular basis for redox control by the human cystine/glutamate antiporter system xc−," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Ekaitz Errasti-Murugarren & Joana Fort & Paola Bartoccioni & Lucía Díaz & Els Pardon & Xavier Carpena & Meritxell Espino-Guarch & Antonio Zorzano & Christine Ziegler & Jan Steyaert & Juan Fernández-Re, 2019. "L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josep Rullo-Tubau & Maria Martinez-Molledo & Paola Bartoccioni & Ignasi Puch-Giner & Ángela Arias & Suwipa Saen-Oon & Camille Stephan-Otto Attolini & Rafael Artuch & Lucía Díaz & Víctor Guallar & Ekai, 2024. "Structure and mechanisms of transport of human Asc1/CD98hc amino acid transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Di Wu & Renhong Yan & Siyuan Song & Andrew K. Swansiger & Yaning Li & James S. Prell & Qiang Zhou & Carol V. Robinson, 2024. "The complete assembly of human LAT1-4F2hc complex provides insights into its regulation, function and localisation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josep Rullo-Tubau & Maria Martinez-Molledo & Paola Bartoccioni & Ignasi Puch-Giner & Ángela Arias & Suwipa Saen-Oon & Camille Stephan-Otto Attolini & Rafael Artuch & Lucía Díaz & Víctor Guallar & Ekai, 2024. "Structure and mechanisms of transport of human Asc1/CD98hc amino acid transporter," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Joanne L. Parker & Justin C. Deme & Dimitrios Kolokouris & Gabriel Kuteyi & Philip C. Biggin & Susan M. Lea & Simon Newstead, 2021. "Molecular basis for redox control by the human cystine/glutamate antiporter system xc−," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Lior Artzi & Assaf Alon & Kelly P. Brock & Anna G. Green & Amy Tam & Fernando H. Ramírez-Guadiana & Debora Marks & Andrew Kruse & David Z. Rudner, 2021. "Dormant spores sense amino acids through the B subunits of their germination receptors," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Michael F. Fuss & Jan-Philip Wieferig & Robin A. Corey & Yvonne Hellmich & Igor Tascón & Joana S. Sousa & Phillip J. Stansfeld & Janet Vonck & Inga Hänelt, 2023. "Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Weidong Zhang & Ayako Miura & Md Moin Abu Saleh & Koichiro Shimizu & Yuichiro Mita & Ryota Tanida & Satoshi Hirako & Seiji Shioda & Valery Gmyr & Julie Kerr-Conte & Francois Pattou & Chunhuan Jin & Yo, 2023. "The NERP-4–SNAT2 axis regulates pancreatic β-cell maintenance and function," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Hyun Deok Song & Fangqiang Zhu, 2015. "Conformational Changes in Two Inter-Helical Loops of Mhp1 Membrane Transporter," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-19, July.
    8. Jixing Lyu & Chang Liu & Tianqi Zhang & Samantha Schrecke & Nicklaus P. Elam & Charles Packianathan & Georg K. A. Hochberg & David Russell & Minglei Zhao & Arthur Laganowsky, 2022. "Structural basis for lipid and copper regulation of the ABC transporter MsbA," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Martin F. Peter & Jan A. Ruland & Peer Depping & Niels Schneberger & Emmanuele Severi & Jonas Moecking & Karl Gatterdam & Sarah Tindall & Alexandre Durand & Veronika Heinz & Jan Peter Siebrasse & Paul, 2022. "Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Junke Liu & Hengmin Tang & Chanjuan Xu & Shengnan Zhou & Xunying Zhu & Yuanyuan Li & Laurent Prézeau & Tao Xu & Jean-Philippe Pin & Philippe Rondard & Wei Ji & Jianfeng Liu, 2022. "Biased signaling due to oligomerization of the G protein-coupled platelet-activating factor receptor," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Victoria C. Young & Hanayo Nakanishi & Dylan J. Meyer & Tomohiro Nishizawa & Atsunori Oshima & Pablo Artigas & Kazuhiro Abe, 2022. "Structure and function of H+/K+ pump mutants reveal Na+/K+ pump mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Di Wu & Renhong Yan & Siyuan Song & Andrew K. Swansiger & Yaning Li & James S. Prell & Qiang Zhou & Carol V. Robinson, 2024. "The complete assembly of human LAT1-4F2hc complex provides insights into its regulation, function and localisation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Abraham O. Oluwole & Robin A. Corey & Chelsea M. Brown & Victor M. Hernández-Rocamora & Phillip J. Stansfeld & Waldemar Vollmer & Jani R. Bolla & Carol V. Robinson, 2022. "Peptidoglycan biosynthesis is driven by lipid transfer along enzyme-substrate affinity gradients," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Ondřej Gahura & Alexander Mühleip & Carolina Hierro-Yap & Brian Panicucci & Minal Jain & David Hollaus & Martina Slapničková & Alena Zíková & Alexey Amunts, 2022. "An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Yaning Li & Yingying Guo & Angelika Bröer & Lu Dai & Stefan Brӧer & Renhong Yan, 2024. "Cryo-EM structure of the human Asc-1 transporter complex," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Iven Winkelmann & Povilas Uzdavinys & Ian M. Kenney & Joseph Brock & Pascal F. Meier & Lina-Marie Wagner & Florian Gabriel & Sukkyeong Jung & Rei Matsuoka & Christoph Ballmoos & Oliver Beckstein & Dav, 2022. "Crystal structure of the Na+/H+ antiporter NhaA at active pH reveals the mechanistic basis for pH sensing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Atsushi Yamagata & Yoshiko Murata & Kosuke Namba & Tohru Terada & Shuya Fukai & Mikako Shirouzu, 2022. "Uptake mechanism of iron-phytosiderophore from the soil based on the structure of yellow stripe transporter," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30293-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.