IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29252-1.html
   My bibliography  Save this article

The speed limit of optoelectronics

Author

Listed:
  • M. Ossiander

    (Max-Planck-Institut für Quantenoptik
    Harvard University)

  • K. Golyari

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • K. Scharl

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • L. Lehnert

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • F. Siegrist

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • J. P. Bürger

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • D. Zimin

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • J. A. Gessner

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • M. Weidman

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • I. Floss

    (Vienna University of Technology)

  • V. Smejkal

    (Vienna University of Technology)

  • S. Donsa

    (Vienna University of Technology)

  • C. Lemell

    (Vienna University of Technology)

  • F. Libisch

    (Vienna University of Technology)

  • N. Karpowicz

    (CNR NANOTEC Institute of Nanotechnology, via Monteroni)

  • J. Burgdörfer

    (Vienna University of Technology)

  • F. Krausz

    (Max-Planck-Institut für Quantenoptik
    Ludwig-Maximilians-Universität München)

  • M. Schultze

    (Ludwig-Maximilians-Universität München
    Graz University of Technology)

Abstract

Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid’s electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency.

Suggested Citation

  • M. Ossiander & K. Golyari & K. Scharl & L. Lehnert & F. Siegrist & J. P. Bürger & D. Zimin & J. A. Gessner & M. Weidman & I. Floss & V. Smejkal & S. Donsa & C. Lemell & F. Libisch & N. Karpowicz & J. , 2022. "The speed limit of optoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29252-1
    DOI: 10.1038/s41467-022-29252-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29252-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29252-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liping Chen & Yu Zhang & GuanHua Chen & Ignacio Franco, 2018. "Stark control of electrons along nanojunctions," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. A. Sommer & E. M. Bothschafter & S. A. Sato & C. Jakubeit & T. Latka & O. Razskazovskaya & H. Fattahi & M. Jobst & W. Schweinberger & V. Shirvanyan & V. S. Yakovlev & R. Kienberger & K. Yabana & N. Ka, 2016. "Attosecond nonlinear polarization and light–matter energy transfer in solids," Nature, Nature, vol. 534(7605), pages 86-90, June.
    3. T. T. Luu & M. Garg & S. Yu. Kruchinin & A. Moulet & M. Th. Hassan & E. Goulielmakis, 2015. "Extreme ultraviolet high-harmonic spectroscopy of solids," Nature, Nature, vol. 521(7553), pages 498-502, May.
    4. Martin Schultze & Elisabeth M. Bothschafter & Annkatrin Sommer & Simon Holzner & Wolfgang Schweinberger & Markus Fiess & Michael Hofstetter & Reinhard Kienberger & Vadym Apalkov & Vladislav S. Yakovle, 2013. "Controlling dielectrics with the electric field of light," Nature, Nature, vol. 493(7430), pages 75-78, January.
    5. R. Kienberger & E. Goulielmakis & M. Uiberacker & A. Baltuska & V. Yakovlev & F. Bammer & A. Scrinzi & Th. Westerwalbesloh & U. Kleineberg & U. Heinzmann & M. Drescher & F. Krausz, 2004. "Atomic transient recorder," Nature, Nature, vol. 427(6977), pages 817-821, February.
    6. Georges Ndabashimiye & Shambhu Ghimire & Mengxi Wu & Dana A. Browne & Kenneth J. Schafer & Mette B. Gaarde & David A. Reis, 2016. "Solid-state harmonics beyond the atomic limit," Nature, Nature, vol. 534(7608), pages 520-523, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximilian Mattes & Mikhail Volkov & Peter Baum, 2024. "Femtosecond electron beam probe of ultrafast electronics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Reislöhner & Doyeong Kim & Ihar Babushkin & Adrian N. Pfeiffer, 2022. "Onset of Bloch oscillations in the almost-strong-field regime," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Enrico Ridente & Mikhail Mamaikin & Najd Altwaijry & Dmitry Zimin & Matthias F. Kling & Vladimir Pervak & Matthew Weidman & Ferenc Krausz & Nicholas Karpowicz, 2022. "Electro-optic characterization of synthesized infrared-visible light fields," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Álvaro Jiménez-Galán & Chandler Bossaer & Guilmot Ernotte & Andrew M. Parks & Rui E. F. Silva & David M. Villeneuve & André Staudte & Thomas Brabec & Adina Luican-Mayer & Giulio Vampa, 2023. "Orbital perspective on high-harmonic generation from solids," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Yang-Yang Lv & Jinlong Xu & Shuang Han & Chi Zhang & Yadong Han & Jian Zhou & Shu-Hua Yao & Xiao-Ping Liu & Ming-Hui Lu & Hongming Weng & Zhenda Xie & Y. B. Chen & Jianbo Hu & Yan-Feng Chen & Shining , 2021. "High-harmonic generation in Weyl semimetal β-WP2 crystals," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Yudong Yang & Roland E. Mainz & Giulio Maria Rossi & Fabian Scheiba & Miguel A. Silva-Toledo & Phillip D. Keathley & Giovanni Cirmi & Franz X. Kärtner, 2021. "Strong-field coherent control of isolated attosecond pulse generation," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Yang Luo & Frank Neubrech & Alberto Martin-Jimenez & Na Liu & Klaus Kern & Manish Garg, 2024. "Real-time tracking of coherent oscillations of electrons in a nanodevice by photo-assisted tunnelling," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Maximilian Mattes & Mikhail Volkov & Peter Baum, 2024. "Femtosecond electron beam probe of ultrafast electronics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Shidong Yang & Xiwang Liu & Jinyan Lin & Ruixin Zuo & Xiaohong Song & Marcelo Ciappina & Weifeng Yang, 2022. "Reconstructing the Semiconductor Band Structure by Deep Learning," Mathematics, MDPI, vol. 10(22), pages 1-11, November.
    9. Soonyoung Cha & Minjeong Kim & Youngjae Kim & Shinyoung Choi & Sejong Kang & Hoon Kim & Sangho Yoon & Gunho Moon & Taeho Kim & Ye Won Lee & Gil Young Cho & Moon Jeong Park & Cheol-Joo Kim & B. J. Kim , 2022. "Gate-tunable quantum pathways of high harmonic generation in graphene," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Peipei Ge & Yankun Dou & Meng Han & Yiqi Fang & Yongkai Deng & Chengyin Wu & Qihuang Gong & Yunquan Liu, 2024. "Spatiotemporal imaging and shaping of electron wave functions using novel attoclock interferometry," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29252-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.