IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60499-6.html
   My bibliography  Save this article

Machine learning-assisted high-throughput prediction and experimental validation of high-responsivity extreme ultraviolet detectors

Author

Listed:
  • R. A. W. Ayyubi

    (University of Illinois at Chicago)

  • Mei Xian Low

    (RMIT University)

  • Salar Salimi

    (Shahid Beheshti University)

  • Majid Khorsandi

    (University of Illinois at Urbana–Champaign)

  • M. Mosarof Hossain

    (Monash University)

  • Hurriyat Arooj

    (Pakistan Institute of Engineering and Applied Sciences)

  • Shoaib Masood

    (University of Illinois at Chicago)

  • M. Husnain Zeb

    (Concordia University, 1455 Boul. de Maisonneuve Ouest)

  • Nasir Mahmood

    (RMIT University)

  • Qiaoliang Bao

    (University of Shanghai for Science and Technology)

  • Sumeet Walia

    (RMIT University)

  • Babar Shabbir

    (University of Illinois at Urbana–Champaign
    RMIT University)

Abstract

Identifying materials with optimal optoelectronic properties for targeted applications represents both a critical need and a persistent challenge in optoelectronic device engineering. Machine learning models often depend on extensive datasets, which are typically lacking in specialized research domains such as extreme ultraviolet (EUV) radiation detection. Here, we demonstrate a Cross-Spectral Response Prediction framework that leverages existing visible and ultraviolet (UV) photoresponse data to predict more efficient material’s performance under EUV radiation. Our predictive model, based on Extremely Randomized Trees, correlates physical descriptors with performance across different spectral regions using a comprehensive dataset of 1927 samples. Through this approach, we identified promising materials such as α-MoO3, MoS2, ReS2, PbI2, and SnO2, achieving responsivities varying from 20 to 60 A/W, exceeding conventional silicon photodiodes by ~225 times in EUV sensing applications. Monte Carlo simulations revealed double electron generation rates (~2×106 electrons per million EUV photons) compared to silicon, with experimental validation confirming the effectiveness of our prediction framework for accelerating the discovery of other high performing materials for diverse spectral applications.

Suggested Citation

  • R. A. W. Ayyubi & Mei Xian Low & Salar Salimi & Majid Khorsandi & M. Mosarof Hossain & Hurriyat Arooj & Shoaib Masood & M. Husnain Zeb & Nasir Mahmood & Qiaoliang Bao & Sumeet Walia & Babar Shabbir, 2025. "Machine learning-assisted high-throughput prediction and experimental validation of high-responsivity extreme ultraviolet detectors," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60499-6
    DOI: 10.1038/s41467-025-60499-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60499-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60499-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amil Merchant & Simon Batzner & Samuel S. Schoenholz & Muratahan Aykol & Gowoon Cheon & Ekin Dogus Cubuk, 2023. "Scaling deep learning for materials discovery," Nature, Nature, vol. 624(7990), pages 80-85, December.
    2. T. T. Luu & M. Garg & S. Yu. Kruchinin & A. Moulet & M. Th. Hassan & E. Goulielmakis, 2015. "Extreme ultraviolet high-harmonic spectroscopy of solids," Nature, Nature, vol. 521(7553), pages 498-502, May.
    3. Yandong Fan & Weian Huang & Fei Zhu & Xingsi Liu & Chunqi Jin & Chenzi Guo & Yang An & Yuri Kivshar & Cheng-Wei Qiu & Wei Li, 2024. "Dispersion-assisted high-dimensional photodetector," Nature, Nature, vol. 630(8015), pages 77-83, June.
    4. Procopios Constantinou & Taylor J. Z. Stock & Li-Ting Tseng & Dimitrios Kazazis & Matthias Muntwiler & Carlos A. F. Vaz & Yasin Ekinci & Gabriel Aeppli & Neil J. Curson & Steven R. Schofield, 2024. "EUV-induced hydrogen desorption as a step towards large-scale silicon quantum device patterning," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Weiliang Ma & Pablo Alonso-González & Shaojuan Li & Alexey Y. Nikitin & Jian Yuan & Javier Martín-Sánchez & Javier Taboada-Gutiérrez & Iban Amenabar & Peining Li & Saül Vélez & Christopher Tollan & Zh, 2018. "In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal," Nature, Nature, vol. 562(7728), pages 557-562, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Álvarez-Cuervo & M. Obst & S. Dixit & G. Carini & A. I. F. Tresguerres-Mata & C. Lanza & E. Terán-García & G. Álvarez-Pérez & L. F. Álvarez-Tomillo & K. Diaz-Granados & R. Kowalski & A. S. Senerath, 2024. "Unidirectional ray polaritons in twisted asymmetric stacks," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Álvaro Jiménez-Galán & Chandler Bossaer & Guilmot Ernotte & Andrew M. Parks & Rui E. F. Silva & David M. Villeneuve & André Staudte & Thomas Brabec & Adina Luican-Mayer & Giulio Vampa, 2023. "Orbital perspective on high-harmonic generation from solids," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. Grigorii Skorupskii & Fabio Orlandi & Iñigo Robredo & Milena Jovanovic & Rinsuke Yamada & Fatmagül Katmer & Maia G. Vergniory & Pascal Manuel & Max Hirschberger & Leslie M. Schoop, 2024. "Designing giant Hall response in layered topological semimetals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2025. "Intellectual Property and Creative Machines," Entrepreneurship and Innovation Policy and the Economy, University of Chicago Press, vol. 4(1), pages 47-79.
    5. Yaolong Li & Yuxin Zhang & Weizhe Zhang & Xiaofang Li & Jinglin Tang & Jingying Xiao & Guanyu Zhang & Xin Liao & Pengzuo Jiang & Qinyun Liu & Yijie Luo & Zini Cao & Qinghong Lyu & Yuanbiao Tong & Ruox, 2025. "Broadband near-infrared hyperbolic polaritons in MoOCl2," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    6. Lukas Conrads & Luis Schüler & Konstantin G. Wirth & Matthias Wuttig & Thomas Taubner, 2024. "Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material In3SbTe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Arjun Nayak & Debobrata Rajak & Balázs Farkas & Camilio Granados & Philipp Stammer & Javier Rivera-Dean & Theocharis Lamprou & Katalin Varju & Yann Mairesse & Marcelo F. Ciappina & Maciej Lewenstein &, 2025. "Attosecond metrology of vacuum-ultraviolet high-order harmonics generated in semiconductors via laser-dressed photoionization of alkali metals," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    8. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    9. Ana I. F. Tresguerres-Mata & Christian Lanza & Javier Taboada-Gutiérrez & Joseph. R. Matson & Gonzalo Álvarez-Pérez & Masahiko Isobe & Aitana Tarazaga Martín-Luengo & Jiahua Duan & Stefan Partel & Mar, 2024. "Observation of naturally canalized phonon polaritons in LiV2O5 thin layers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Eva A. A. Pogna & Valentino Pistore & Leonardo Viti & Lianhe Li & A. Giles Davies & Edmund H. Linfield & Miriam S. Vitiello, 2024. "Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Keke Song & Rui Zhao & Jiahui Liu & Yanzhou Wang & Eric Lindgren & Yong Wang & Shunda Chen & Ke Xu & Ting Liang & Penghua Ying & Nan Xu & Zhiqiang Zhao & Jiuyang Shi & Junjie Wang & Shuang Lyu & Zezhu, 2024. "General-purpose machine-learned potential for 16 elemental metals and their alloys," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Sylvianne D. C. Roscam Abbing & Nataliia Kuzkova & Roy Linden & Filippo Campi & Brian Keijzer & Corentin Morice & Zhuang-Yan Zhang & Maarten L. S. Geest & Peter M. Kraus, 2024. "Enhancing the efficiency of high-order harmonics with two-color non-collinear wave mixing in silica," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Shidong Yang & Xiwang Liu & Jinyan Lin & Ruixin Zuo & Xiaohong Song & Marcelo Ciappina & Weifeng Yang, 2022. "Reconstructing the Semiconductor Band Structure by Deep Learning," Mathematics, MDPI, vol. 10(22), pages 1-11, November.
    15. Neda Alsadat Aghamiri & Guangwei Hu & Alireza Fali & Zhen Zhang & Jiahan Li & Sivacarendran Balendhran & Sumeet Walia & Sharath Sriram & James H. Edgar & Shriram Ramanathan & Andrea Alù & Yohannes Aba, 2022. "Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Daniel Schwalbe-Koda & Sebastien Hamel & Babak Sadigh & Fei Zhou & Vincenzo Lordi, 2025. "Model-free estimation of completeness, uncertainties, and outliers in atomistic machine learning using information theory," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Mingwei Ge & Yuan Yao & Tyler Wang & Subhrangsu Mukherjee & Harald Ade & Mengxia Liu, 2025. "Accurate single-shot full-Stokes detection enabled by heterogeneous grain orientations in polycrystalline films," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    18. Wang, Jian & Wang, Yincheng & Dong, Xiaoshan & Hu, Yongjie & Tao, Junyu & Kumar, Akash & Yan, Beibei & Chen, Yuxuan & Su, Hong & Chen, Guanyi, 2024. "Insights into behaviors of functional groups in biomass derived products during aqueous phase reforming over Ni/α-MoO3 catalysts," Renewable Energy, Elsevier, vol. 224(C).
    19. Xiang Ni & Giulia Carini & Weiliang Ma & Enrico Maria Renzi & Emanuele Galiffi & Sören Wasserroth & Martin Wolf & Peining Li & Alexander Paarmann & Andrea Alù, 2023. "Observation of directional leaky polaritons at anisotropic crystal interfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. David Buterez & Jon Paul Janet & Steven J. Kiddle & Dino Oglic & Pietro Lió, 2024. "Transfer learning with graph neural networks for improved molecular property prediction in the multi-fidelity setting," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60499-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.