IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27258-9.html
   My bibliography  Save this article

Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits

Author

Listed:
  • Marion Patxot

    (University of Lausanne)

  • Daniel Trejo Banos

    (University of Lausanne)

  • Athanasios Kousathanas

    (University of Lausanne)

  • Etienne J. Orliac

    (University of Lausanne)

  • Sven E. Ojavee

    (University of Lausanne)

  • Gerhard Moser

    (Australian Agricultural Company Limited)

  • Alexander Holloway

    (University of Lausanne)

  • Julia Sidorenko

    (University of Queensland)

  • Zoltan Kutalik

    (University of Lausanne
    University Center for Primary Care and Public Health
    Swiss Institute of Bioinformatics)

  • Reedik Mägi

    (University of Tartu)

  • Peter M. Visscher

    (University of Queensland)

  • Lars Rönnegård

    (Dalarna University
    Swedish University of Agricultural Sciences)

  • Matthew R. Robinson

    (Institute of Science and Technology Austria)

Abstract

We develop a Bayesian model (BayesRR-RC) that provides robust SNP-heritability estimation, an alternative to marker discovery, and accurate genomic prediction, taking 22 seconds per iteration to estimate 8.4 million SNP-effects and 78 SNP-heritability parameters in the UK Biobank. We find that only ≤10% of the genetic variation captured for height, body mass index, cardiovascular disease, and type 2 diabetes is attributable to proximal regulatory regions within 10kb upstream of genes, while 12-25% is attributed to coding regions, 32–44% to introns, and 22-28% to distal 10-500kb upstream regions. Up to 24% of all cis and coding regions of each chromosome are associated with each trait, with over 3,100 independent exonic and intronic regions and over 5,400 independent regulatory regions having ≥95% probability of contributing ≥0.001% to the genetic variance of these four traits. Our open-source software (GMRM) provides a scalable alternative to current approaches for biobank data.

Suggested Citation

  • Marion Patxot & Daniel Trejo Banos & Athanasios Kousathanas & Etienne J. Orliac & Sven E. Ojavee & Gerhard Moser & Alexander Holloway & Julia Sidorenko & Zoltan Kutalik & Reedik Mägi & Peter M. Vissch, 2021. "Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27258-9
    DOI: 10.1038/s41467-021-27258-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27258-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27258-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Trejo Banos & Daniel L. McCartney & Marion Patxot & Lucas Anchieri & Thomas Battram & Colette Christiansen & Ricardo Costeira & Rosie M. Walker & Stewart W. Morris & Archie Campbell & Qian Zhan, 2020. "Bayesian reassessment of the epigenetic architecture of complex traits," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Qianqian Zhang & Florian Privé & Bjarni Vilhjálmsson & Doug Speed, 2021. "Improved genetic prediction of complex traits from individual-level data or summary statistics," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Gerhard Moser & Sang Hong Lee & Ben J Hayes & Michael E Goddard & Naomi R Wray & Peter M Visscher, 2015. "Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-22, April.
    4. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
    5. Rohan Fernando & Ali Toosi & Anna Wolc & Dorian Garrick & Jack Dekkers, 2017. "Application of Whole-Genome Prediction Methods for Genome-Wide Association Studies: A Bayesian Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 172-193, June.
    6. Luke R. Lloyd-Jones & Jian Zeng & Julia Sidorenko & Loïc Yengo & Gerhard Moser & Kathryn E. Kemper & Huanwei Wang & Zhili Zheng & Reedik Magi & Tõnu Esko & Andres Metspalu & Naomi R. Wray & Michael E., 2019. "Improved polygenic prediction by Bayesian multiple regression on summary statistics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. Daniel Trejo Banos & Daniel L. McCartney & Marion Patxot & Lucas Anchieri & Thomas Battram & Colette Christiansen & Ricardo Costeira & Rosie M. Walker & Stewart W. Morris & Archie Campbell & Qian Zhan, 2020. "Author Correction: Bayesian reassessment of the epigenetic architecture of complex traits," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Clara Albiñana & Zhihong Zhu & Andrew J. Schork & Andrés Ingason & Hugues Aschard & Isabell Brikell & Cynthia M. Bulik & Liselotte V. Petersen & Esben Agerbo & Jakob Grove & Merete Nordentoft & David , 2023. "Multi-PGS enhances polygenic prediction by combining 937 polygenic scores," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Wenhan Chen & Yang Wu & Zhili Zheng & Ting Qi & Peter M. Visscher & Zhihong Zhu & Jian Yang, 2021. "Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Thomas Battram & Tom R. Gaunt & Caroline L. Relton & Nicholas J. Timpson & Gibran Hemani, 2022. "A comparison of the genes and genesets identified by GWAS and EWAS of fifteen complex traits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Mitchell, Brittany L. & Hansell, Narelle K. & McAloney, Kerrie & Martin, Nicholas G. & Wright, Margaret J. & Renteria, Miguel E. & Grasby, Katrina L., 2022. "Polygenic influences associated with adolescent cognitive skills," Intelligence, Elsevier, vol. 94(C).
    8. Brittany L. Mitchell & Jake R. Saklatvala & Nick Dand & Fiona A. Hagenbeek & Xin Li & Josine L. Min & Laurent Thomas & Meike Bartels & Jouke Hottenga & Michelle K. Lupton & Dorret I. Boomsma & Xianjun, 2022. "Genome-wide association meta-analysis identifies 29 new acne susceptibility loci," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Shibo Wang & Fangjie Xie & Shizhong Xu, 2022. "Estimating genetic variance contributed by a quantitative trait locus: A random model approach," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-30, March.
    11. Isabelle Austin-Zimmerman & Daniel F. Levey & Olga Giannakopoulou & Joseph D. Deak & Marco Galimberti & Keyrun Adhikari & Hang Zhou & Spiros Denaxas & Haritz Irizar & Karoline Kuchenbaecker & Andrew M, 2023. "Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Song Zhai & Hong Zhang & Devan V. Mehrotra & Judong Shen, 2022. "Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    14. Parsa Akbari & Olukayode A. Sosina & Jonas Bovijn & Karl Landheer & Jonas B. Nielsen & Minhee Kim & Senem Aykul & Tanima De & Mary E. Haas & George Hindy & Nan Lin & Ian R. Dinsmore & Jonathan Z. Luo , 2022. "Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Nathan LaPierre & Kodi Taraszka & Helen Huang & Rosemary He & Farhad Hormozdiari & Eleazar Eskin, 2021. "Identifying causal variants by fine mapping across multiple studies," PLOS Genetics, Public Library of Science, vol. 17(9), pages 1-19, September.
    16. Yunfeng Huang & Dora Bodnar & Chia-Yen Chen & Gabriela Sanchez-Andrade & Mark Sanderson & Jun Shi & Katherine G. Meilleur & Matthew E. Hurles & Sebastian S. Gerety & Ellen A. Tsai & Heiko Runz, 2023. "Rare genetic variants impact muscle strength," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Chachrit Khunsriraksakul & Qinmengge Li & Havell Markus & Matthew T. Patrick & Renan Sauteraud & Daniel McGuire & Xingyan Wang & Chen Wang & Lida Wang & Siyuan Chen & Ganesh Shenoy & Bingshan Li & Xue, 2023. "Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Mingxuan Cai & Zhiwei Wang & Jiashun Xiao & Xianghong Hu & Gang Chen & Can Yang, 2023. "XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Linda Ottensmann & Rubina Tabassum & Sanni E. Ruotsalainen & Mathias J. Gerl & Christian Klose & Elisabeth Widén & Kai Simons & Samuli Ripatti & Matti Pirinen, 2023. "Genome-wide association analysis of plasma lipidome identifies 495 genetic associations," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. N. Hernández & J. Soenksen & P. Newcombe & M. Sandhu & I. Barroso & C. Wallace & J. L. Asimit, 2021. "The flashfm approach for fine-mapping multiple quantitative traits," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27258-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.