IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27148-0.html
   My bibliography  Save this article

Helicobacter pylori FabX contains a [4Fe-4S] cluster essential for unsaturated fatty acid synthesis

Author

Listed:
  • Jiashen Zhou

    (Shanghai Jiao Tong University School of Medicine)

  • Lin Zhang

    (Shanghai Jiao Tong University School of Medicine)

  • Liping Zeng

    (Nanjing Medical University)

  • Lu Yu

    (Chinese Academy of Sciences)

  • Yuanyuan Duan

    (Nanjing Medical University)

  • Siqi Shen

    (Shanghai Jiao Tong University School of Medicine)

  • Jingyan Hu

    (Shanghai Jiao Tong University School of Medicine)

  • Pan Zhang

    (Fudan University)

  • Wenyan Song

    (Shanghai Jiao Tong University School of Medicine)

  • Xiaoxue Ruan

    (Fudan University)

  • Jing Jiang

    (Nanjing University of Chinese Medicine)

  • Yinan Zhang

    (Nanjing University of Chinese Medicine)

  • Lu Zhou

    (Fudan University)

  • Jia Jia

    (Nanjing Medical University)

  • Xudong Hang

    (Nanjing Medical University)

  • Changlin Tian

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Houwen Lin

    (Shanghai Jiao Tong University School of Medicine)

  • Hong-Zhuan Chen

    (Shanghai University of Traditional Chinese Medicine)

  • John E. Cronan

    (University of Illinois)

  • Hongkai Bi

    (Nanjing Medical University)

  • Liang Zhang

    (Shanghai Jiao Tong University School of Medicine)

Abstract

Unsaturated fatty acids (UFAs) are essential for functional membrane phospholipids in most bacteria. The bifunctional dehydrogenase/isomerase FabX is an essential UFA biosynthesis enzyme in the widespread human pathogen Helicobacter pylori, a bacterium etiologically related to 95% of gastric cancers. Here, we present the crystal structures of FabX alone and in complexes with an octanoyl-acyl carrier protein (ACP) substrate or with holo-ACP. FabX belongs to the nitronate monooxygenase (NMO) flavoprotein family but contains an atypical [4Fe-4S] cluster absent in all other family members characterized to date. FabX binds ACP via its positively charged α7 helix that interacts with the negatively charged α2 and α3 helices of ACP. We demonstrate that the [4Fe-4S] cluster potentiates FMN oxidation during dehydrogenase catalysis, generating superoxide from an oxygen molecule that is locked in an oxyanion hole between the FMN and the active site residue His182. Both the [4Fe-4S] and FMN cofactors are essential for UFA synthesis, and the superoxide is subsequently excreted by H. pylori as a major resource of peroxide which may contribute to its pathogenic function in the corrosion of gastric mucosa.

Suggested Citation

  • Jiashen Zhou & Lin Zhang & Liping Zeng & Lu Yu & Yuanyuan Duan & Siqi Shen & Jingyan Hu & Pan Zhang & Wenyan Song & Xiaoxue Ruan & Jing Jiang & Yinan Zhang & Lu Zhou & Jia Jia & Xudong Hang & Changlin, 2021. "Helicobacter pylori FabX contains a [4Fe-4S] cluster essential for unsaturated fatty acid synthesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27148-0
    DOI: 10.1038/s41467-021-27148-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27148-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27148-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher C. Page & Christopher C. Moser & Xiaoxi Chen & P. Leslie Dutton, 1999. "Natural engineering principles of electron tunnelling in biological oxidation–reduction," Nature, Nature, vol. 402(6757), pages 47-52, November.
    2. Chi Nguyen & Robert W. Haushalter & D. John Lee & Phineus R. L. Markwick & Joel Bruegger & Grace Caldara-Festin & Kara Finzel & David R. Jackson & Fumihiro Ishikawa & Bing O’Dowd & J. Andrew McCammon , 2014. "Trapping the dynamic acyl carrier protein in fatty acid biosynthesis," Nature, Nature, vol. 505(7483), pages 427-431, January.
    3. Jeffrey T. Mindrebo & Ashay Patel & Woojoo E. Kim & Tony D. Davis & Aochiu Chen & Thomas G. Bartholow & James J. Clair & J. Andrew McCammon & Joseph P. Noel & Michael D. Burkart, 2020. "Gating mechanism of elongating β-ketoacyl-ACP synthases," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangzhu Han & Yiqi Hu & Mengchen Wu & Zhaoxiang He & Hongtao Tian & Long Zhou, 2023. "Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Ralf Steinhilper & Gabriele Höff & Johann Heider & Bonnie J. Murphy, 2022. "Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Qian Wang & Ning Liu & Yaming Deng & Yuze Guan & Hongli Xiao & Tara A. Nitka & Hui Yang & Anju Yadav & Lela Vukovic & Irimpan I. Mathews & Xi Chen & Chu-Young Kim, 2023. "Triepoxide formation by a flavin-dependent monooxygenase in monensin biosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Anuj Kumar & Florian Kremp & Jennifer Roth & Sven A. Freibert & Volker Müller & Jan M. Schuller, 2023. "Molecular architecture and electron transfer pathway of the Stn family transhydrogenase," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Lorenzo Cimmino & Américo G. Duarte & Dongchun Ni & Babatunde E. Ekundayo & Inês A. C. Pereira & Henning Stahlberg & Christof Holliger & Julien Maillard, 2023. "Structure of a membrane-bound menaquinol:organohalide oxidoreductase," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Jun-ichi Kishikawa & Moe Ishikawa & Takahiro Masuya & Masatoshi Murai & Yuki Kitazumi & Nicole L. Butler & Takayuki Kato & Blanca Barquera & Hideto Miyoshi, 2022. "Cryo-EM structures of Na+-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Josh P. Prince & Jani R. Bolla & Gemma L. M. Fisher & Jarno Mäkelä & Marjorie Fournier & Carol V. Robinson & Lidia K. Arciszewska & David J. Sherratt, 2021. "Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Jialiang Wang & Xiaojie Wang & Xixi Li & LiangLiang Kong & Zeqian Du & Dandan Li & Lixia Gou & Hao Wu & Wei Cao & Xiaozheng Wang & Shuangjun Lin & Ting Shi & Zixin Deng & Zhijun Wang & Jingdan Liang, 2023. "C–N bond formation by a polyketide synthase," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Suk Min Kim & Sung Heuck Kang & Jinhee Lee & Yoonyoung Heo & Eleni G. Poloniataki & Jingu Kang & Hye-Jin Yoon & So Yeon Kong & Yaejin Yun & Hyunwoo Kim & Jungki Ryu & Hyung Ho Lee & Yong Hwan Kim, 2024. "Identifying a key spot for electron mediator-interaction to tailor CO dehydrogenase’s affinity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Nathan M. Ennist & Zhenyu Zhao & Steven E. Stayrook & Bohdana M. Discher & P. Leslie Dutton & Christopher C. Moser, 2022. "De novo protein design of photochemical reaction centers," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Emanuela Gatto & Raffaella Lettieri & Luigi Vesce & Mariano Venanzi, 2022. "Peptide Materials in Dye Sensitized Solar Cells," Energies, MDPI, vol. 15(15), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27148-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.