IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26789-5.html
   My bibliography  Save this article

A general theoretical framework to design base editors with reduced bystander effects

Author

Listed:
  • Qian Wang

    (University of Science and Technology of China
    Rice University)

  • Jie Yang

    (Rice University)

  • Zhicheng Zhong

    (University of Science and Technology of China)

  • Jeffrey A. Vanegas

    (Rice University)

  • Xue Gao

    (Rice University
    Rice University
    Rice University)

  • Anatoly B. Kolomeisky

    (Rice University
    Rice University
    Rice University
    Rice University)

Abstract

Base editors (BEs) hold great potential for medical applications of gene therapy. However, high precision base editing requires BEs that can discriminate between the target base and multiple bystander bases within a narrow active window (4 – 10 nucleotides). Here, to assist in the design of these optimized editors, we propose a discrete-state stochastic approach to build an analytical model that explicitly evaluates the probabilities of editing the target base and bystanders. Combined with all-atom molecular dynamic simulations, our model reproduces the experimental data of A3A-BE3 and its variants for targeting the “TC” motif and bystander editing. Analyzing this approach, we propose several general principles that can guide the design of BEs with a reduced bystander effect. These principles are then applied to design a series of point mutations at T218 position of A3G-BEs to further reduce its bystander editing. We verify experimentally that the new mutations provide different levels of stringency on reducing the bystander editing at different genomic loci, which is consistent with our theoretical model. Thus, our study provides a computational-aided platform to assist in the scientifically-based design of BEs with reduced bystander effects.

Suggested Citation

  • Qian Wang & Jie Yang & Zhicheng Zhong & Jeffrey A. Vanegas & Xue Gao & Anatoly B. Kolomeisky, 2021. "A general theoretical framework to design base editors with reduced bystander effects," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26789-5
    DOI: 10.1038/s41467-021-26789-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26789-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26789-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    2. Nicole M. Gaudelli & Alexis C. Komor & Holly A. Rees & Michael S. Packer & Ahmed H. Badran & David I. Bryson & David R. Liu, 2017. "Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage," Nature, Nature, vol. 551(7681), pages 464-471, November.
    3. Atanu Maiti & Wazo Myint & Tapan Kanai & Krista Delviks-Frankenberry & Christina Sierra Rodriguez & Vinay K. Pathak & Celia A. Schiffer & Hiroshi Matsuo, 2018. "Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    4. In-Ja L. Byeon & Jinwoo Ahn & Mithun Mitra & Chang-Hyeock Byeon & Kamil Hercík & Jozef Hritz & Lisa M. Charlton & Judith G. Levin & Angela M. Gronenborn, 2013. "NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity," Nature Communications, Nature, vol. 4(1), pages 1-11, October.
    5. Takahide Kouno & Tania V. Silvas & Brendan J. Hilbert & Shivender M. D. Shandilya & Markus F. Bohn & Brian A. Kelch & William E. Royer & Mohan Somasundaran & Nese Kurt Yilmaz & Hiroshi Matsuo & Celia , 2017. "Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Harjes & Harikrishnan M. Kurup & Amanda E. Rieffer & Maitsetseg Bayarjargal & Jana Filitcheva & Yongdong Su & Tracy K. Hale & Vyacheslav V. Filichev & Elena Harjes & Reuben S. Harris & Geoffrey, 2023. "Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Ambrocio Sanchez & Pedro Ortega & Ramin Sakhtemani & Lavanya Manjunath & Sunwoo Oh & Elodie Bournique & Alexandrea Becker & Kyumin Kim & Cameron Durfee & Nuri Alpay Temiz & Xiaojiang S. Chen & Reuben , 2024. "Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Zeyu Lu & Lingtian Zhang & Qing Mu & Junyang Liu & Yu Chen & Haoyuan Wang & Yanjun Zhang & Rui Su & Ruijun Wang & Zhiying Wang & Qi Lv & Zhihong Liu & Jiasen Liu & Yunhua Li & Yanhong Zhao, 2024. "Progress in Research and Prospects for Application of Precision Gene-Editing Technology Based on CRISPR–Cas9 in the Genetic Improvement of Sheep and Goats," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    4. Jaesuk Lee & Kayeong Lim & Annie Kim & Young Geun Mok & Eugene Chung & Sung-Ik Cho & Ji Min Lee & Jin-Soo Kim, 2023. "Prime editing with genuine Cas9 nickases minimizes unwanted indels," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jeonghun Kwon & Minyoung Kim & Seungmin Bae & Anna Jo & Youngho Kim & Jungjoon K. Lee, 2022. "TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Dominique L. Brooks & Manuel J. Carrasco & Ping Qu & William H. Peranteau & Rebecca C. Ahrens-Nicklas & Kiran Musunuru & Mohamad-Gabriel Alameh & Xiao Wang, 2023. "Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yidong Wu & Xiaoling Wan & Dongdong Zhao & Xuxu Chen & Yujie Wang & Xinxin Tang & Ju Li & Siwei Li & Xiaodong Sun & Changhao Bi & Xueli Zhang, 2023. "AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Daniel C. Volke & Román A. Martino & Ekaterina Kozaeva & Andrea M. Smania & Pablo I. Nikel, 2022. "Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Chengdong Zhang & Yuan Yang & Tao Qi & Yuening Zhang & Linghui Hou & Jingjing Wei & Jingcheng Yang & Leming Shi & Sang-Ging Ong & Hongyan Wang & Hui Wang & Bo Yu & Yongming Wang, 2023. "Prediction of base editor off-targets by deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Kayeong Lim & Sung-Ik Cho & Jin-Soo Kim, 2022. "Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Lin Zhao & Sabrina R. T. Koseki & Rachel A. Silverstein & Nadia Amrani & Christina Peng & Christian Kramme & Natasha Savic & Martin Pacesa & Tomás C. Rodríguez & Teodora Stan & Emma Tysinger & Lauren , 2023. "PAM-flexible genome editing with an engineered chimeric Cas9," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Atanu Maiti & Adam K. Hedger & Wazo Myint & Vanivilasini Balachandran & Jonathan K. Watts & Celia A. Schiffer & Hiroshi Matsuo, 2022. "Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Yakun Wang & Shengjia Tang & Naihui Guo & Ruihu An & Zongliang Ren & Shikai Hu & Xiangjin Wei & Guiai Jiao & Lihong Xie & Ling Wang & Ying Chen & Fengli Zhao & Peisong Hu & Zhonghua Sheng & Shaoqing T, 2023. "Base Editing of EUI1 Improves the Elongation of the Uppermost Internode in Two-Line Male Sterile Rice Lines," Agriculture, MDPI, vol. 13(3), pages 1-13, March.
    15. Daphne Collias & Elena Vialetto & Jiaqi Yu & Khoa Co & Éva d. H. Almási & Ann-Sophie Rüttiger & Tatjana Achmedov & Till Strowig & Chase L. Beisel, 2023. "Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Luke Hoberecht & Pirunthan Perampalam & Aaron Lun & Jean-Philippe Fortin, 2022. "A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    17. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Nathan Bamidele & Han Zhang & Xiaolong Dong & Haoyang Cheng & Nicholas Gaston & Hailey Feinzig & Hanbing Cao & Karen Kelly & Jonathan K. Watts & Jun Xie & Guangping Gao & Erik J. Sontheimer, 2024. "Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26789-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.