IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26640-x.html
   My bibliography  Save this article

The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma

Author

Listed:
  • Min Pan

    (St. Jude Children’s Research Hospital)

  • William C. Wright

    (St. Jude Children’s Research Hospital)

  • Richard H. Chapple

    (St. Jude Children’s Research Hospital)

  • Asif Zubair

    (St. Jude Children’s Research Hospital)

  • Manbir Sandhu

    (St. Jude Children’s Research Hospital)

  • Jake E. Batchelder

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Brandt C. Huddle

    (Weill Cornell Medicine)

  • Jonathan Low

    (St. Jude Children’s Research Hospital)

  • Kaley B. Blankenship

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Yingzhe Wang

    (Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital)

  • Brittney Gordon

    (St. Jude Children’s Research Hospital)

  • Payton Archer

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Samuel W. Brady

    (St. Jude Children’s Research Hospital)

  • Sivaraman Natarajan

    (St. Jude Children’s Research Hospital)

  • Matthew J. Posgai

    (The University of Chicago)

  • John Schuetz

    (St. Jude Children’s Research Hospital)

  • Darcie Miller

    (St. Jude Children’s Research Hospital)

  • Ravi Kalathur

    (St. Jude Children’s Research Hospital)

  • Siquan Chen

    (Cellular Screening Center, The University of Chicago)

  • Jon Patrick Connelly

    (St. Jude Children’s Research Hospital)

  • M. Madan Babu

    (St. Jude Children’s Research Hospital)

  • Michael A. Dyer

    (St. Jude Children’s Research Hospital
    Howard Hughes Medical Institute)

  • Shondra M. Pruett-Miller

    (St. Jude Children’s Research Hospital)

  • Burgess B. Freeman

    (Preclinical Pharmacokinetic Shared Resource, St. Jude Children’s Research Hospital)

  • Taosheng Chen

    (St. Jude Children’s Research Hospital)

  • Lucy A. Godley

    (The University of Chicago)

  • Scott C. Blanchard

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • Elizabeth Stewart

    (St. Jude Children’s Research Hospital
    St. Jude Children’s Research Hospital)

  • John Easton

    (St. Jude Children’s Research Hospital)

  • Paul Geeleher

    (St. Jude Children’s Research Hospital)

Abstract

Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity—often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.

Suggested Citation

  • Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26640-x
    DOI: 10.1038/s41467-021-26640-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26640-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26640-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaotu Ma & Yu Liu & Yanling Liu & Ludmil B. Alexandrov & Michael N. Edmonson & Charles Gawad & Xin Zhou & Yongjin Li & Michael C. Rusch & John Easton & Robert Huether & Veronica Gonzalez-Pena & Mark , 2018. "Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours," Nature, Nature, vol. 555(7696), pages 371-376, March.
    2. Elaine Sanij & Katherine M. Hannan & Jiachen Xuan & Shunfei Yan & Jessica E. Ahern & Anna S. Trigos & Natalie Brajanovski & Jinbae Son & Keefe T. Chan & Olga Kondrashova & Elizabeth Lieschke & Matthew, 2020. "CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer," Nature Communications, Nature, vol. 11(1), pages 1-18, December.
    3. Allison Warren & Yejia Chen & Andrew Jones & Tsukasa Shibue & William C. Hahn & Jesse S. Boehm & Francisca Vazquez & Aviad Tsherniak & James M. McFarland, 2021. "Global computational alignment of tumor and cell line transcriptional profiles," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Samuel W. Brady & Yanling Liu & Xiaotu Ma & Alexander M. Gout & Kohei Hagiwara & Xin Zhou & Jian Wang & Michael Macias & Xiaolong Chen & John Easton & Heather L. Mulder & Michael Rusch & Lu Wang & Joy, 2020. "Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    5. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J.Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Red, 2012. "Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 492(7428), pages 290-290, December.
    6. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J. Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Re, 2012. "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 483(7391), pages 603-607, March.
    7. Fiona M. Behan & Francesco Iorio & Gabriele Picco & Emanuel Gonçalves & Charlotte M. Beaver & Giorgia Migliardi & Rita Santos & Yanhua Rao & Francesco Sassi & Marika Pinnelli & Rizwan Ansari & Sarah H, 2019. "Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens," Nature, Nature, vol. 568(7753), pages 511-516, April.
    8. Mathew J. Garnett & Elena J. Edelman & Sonja J. Heidorn & Chris D. Greenman & Anahita Dastur & King Wai Lau & Patricia Greninger & I. Richard Thompson & Xi Luo & Jorge Soares & Qingsong Liu & Francesc, 2012. "Systematic identification of genomic markers of drug sensitivity in cancer cells," Nature, Nature, vol. 483(7391), pages 570-575, March.
    9. Varsha Prakash & Brittany B. Carson & Jennifer M. Feenstra & Randall A. Dass & Petra Sekyrova & Ayuko Hoshino & Julian Petersen & Yuan Guo & Matthew M. Parks & Chad M. Kurylo & Jake E. Batchelder & Kr, 2019. "Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    10. Christian Ritz & Florent Baty & Jens C Streibig & Daniel Gerhard, 2015. "Dose-Response Analysis Using R," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melvin Pan & Christiane Zorbas & Maki Sugaya & Kensuke Ishiguro & Miki Kato & Miyuki Nishida & Hai-Feng Zhang & Marco M. Candeias & Akimitsu Okamoto & Takamasa Ishikawa & Tomoyoshi Soga & Hiroyuki Abu, 2022. "Glutamine deficiency in solid tumor cells confers resistance to ribosomal RNA synthesis inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. John Hilton & Karen Gelmon & Philippe L. Bedard & Dongsheng Tu & Hong Xu & Anna V. Tinker & Rachel Goodwin & Scott A. Laurie & Derek Jonker & Aaron R. Hansen & Zachary W. Veitch & Daniel J. Renouf & L, 2022. "Results of the phase I CCTG IND.231 trial of CX-5461 in patients with advanced solid tumors enriched for DNA-repair deficiencies," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Han Jin & Cheng Zhang & Martin Zwahlen & Kalle Feilitzen & Max Karlsson & Mengnan Shi & Meng Yuan & Xiya Song & Xiangyu Li & Hong Yang & Hasan Turkez & Linn Fagerberg & Mathias Uhlén & Adil Mardinoglu, 2023. "Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Jurica Levatić & Marina Salvadores & Francisco Fuster-Tormo & Fran Supek, 2022. "Mutational signatures are markers of drug sensitivity of cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Shi, Chengchun & Xu, Tianlin & Bergsma, Wicher & Li, Lexin, 2021. "Double generative adversarial networks for conditional independence testing," LSE Research Online Documents on Economics 112550, London School of Economics and Political Science, LSE Library.
    6. Sandor Spisak & David Chen & Pornlada Likasitwatanakul & Paul Doan & Zhixin Li & Pratyusha Bala & Laura Vizkeleti & Viktoria Tisza & Pushpamali Silva & Marios Giannakis & Brian Wolpin & Jun Qi & Nilay, 2024. "Identifying regulators of aberrant stem cell and differentiation activity in colorectal cancer using a dual endogenous reporter system," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Florian P. Bayer & Manuel Gander & Bernhard Kuster & Matthew The, 2023. "CurveCurator: a recalibrated F-statistic to assess, classify, and explore significance of dose–response curves," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Junyi Chen & Xiaoying Wang & Anjun Ma & Qi-En Wang & Bingqiang Liu & Lang Li & Dong Xu & Qin Ma, 2022. "Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Omar Alhalabi & Jianfeng Chen & Yuxue Zhang & Yang Lu & Qi Wang & Sumankalai Ramachandran & Rebecca Slack Tidwell & Guangchun Han & Xinmiao Yan & Jieru Meng & Ruiping Wang & Anh G. Hoang & Wei-Lien Wa, 2022. "MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Yan Li & Chen Xu & Bing Wang & Fujiang Xu & Fahan Ma & Yuanyuan Qu & Dongxian Jiang & Kai Li & Jinwen Feng & Sha Tian & Xiaohui Wu & Yunzhi Wang & Yang Liu & Zhaoyu Qin & Yalan Liu & Jing Qin & Qi Son, 2022. "Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals potential therapeutic strategies," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    12. Aina Maria Mas & Enrique Goñi & Igor Ruiz de los Mozos & Aida Arcas & Luisa Statello & Jovanna González & Lorea Blázquez & Wei Ting Chelsea Lee & Dipika Gupta & Álvaro Sejas & Shoko Hoshina & Alexandr, 2023. "ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Seungyeul Yoo & Abhilasha Sinha & Dawei Yang & Nasser K. Altorki & Radhika Tandon & Wenhui Wang & Deebly Chavez & Eunjee Lee & Ayushi S. Patel & Takashi Sato & Ranran Kong & Bisen Ding & Eric E. Schad, 2022. "Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Alon Stern & Mariam Fokra & Boris Sarvin & Ahmad Abed Alrahem & Won Dong Lee & Elina Aizenshtein & Nikita Sarvin & Tomer Shlomi, 2023. "Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Mariela Cortés-López & Laura Schulz & Mihaela Enculescu & Claudia Paret & Bea Spiekermann & Mathieu Quesnel-Vallières & Manuel Torres-Diz & Sebastian Unic & Anke Busch & Anna Orekhova & Monika Kuban &, 2022. "High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Qiwei Jiang & Xiaomei Zhang & Xiaoming Dai & Shiyao Han & Xueji Wu & Lei Wang & Wenyi Wei & Ning Zhang & Wei Xie & Jianping Guo, 2022. "S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    19. Xiao-Song Wang & Sanghoon Lee & Han Zhang & Gong Tang & Yue Wang, 2022. "An integral genomic signature approach for tailored cancer therapy using genome-wide sequencing data," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Sayantani Ghosh Dastidar & Bony Kumar & Bo Lauckner & Damien Parrello & Danielle Perley & Maria Vlasenok & Antariksh Tyagi & Nii Koney-Kwaku Koney & Ata Abbas & Sergei Nechaev, 2023. "Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26640-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.