IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26457-8.html
   My bibliography  Save this article

A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling

Author

Listed:
  • D. Cattiaux

    (Institut Néel - CNRS UPR2940)

  • I. Golokolenov

    (Institut Néel - CNRS UPR2940)

  • S. Kumar

    (Institut Néel - CNRS UPR2940)

  • M. Sillanpää

    (Aalto University)

  • L. Mercier de Lépinay

    (Aalto University)

  • R. R. Gazizulin

    (Institut Néel - CNRS UPR2940)

  • X. Zhou

    (IEMN, Univ. Lille - CNRS UMR8520)

  • A. D. Armour

    (University of Nottingham)

  • O. Bourgeois

    (Institut Néel - CNRS UPR2940)

  • A. Fefferman

    (Institut Néel - CNRS UPR2940)

  • E. Collin

    (Institut Néel - CNRS UPR2940)

Abstract

The nature of the quantum-to-classical crossover remains one of the most challenging open question of Science to date. In this respect, moving objects play a specific role. Pioneering experiments over the last few years have begun exploring quantum behaviour of micron-sized mechanical systems, either by passively cooling single GHz modes, or by adapting laser cooling techniques developed in atomic physics to cool specific low-frequency modes far below the temperature of their surroundings. Here instead we describe a very different approach, passive cooling of a whole micromechanical system down to 500 μK, reducing the average number of quanta in the fundamental vibrational mode at 15 MHz to just 0.3 (with even lower values expected for higher harmonics); the challenge being to be still able to detect the motion without disturbing the system noticeably. With such an approach higher harmonics and the surrounding environment are also cooled, leading to potentially much longer mechanical coherence times, and enabling experiments questioning mechanical wave-function collapse, potentially from the gravitational background, and quantum thermodynamics. Beyond the average behaviour, here we also report on the fluctuations of the fundamental vibrational mode of the device in-equilibrium with the cryostat. These reveal a surprisingly complex interplay with the local environment and allow characteristics of two distinct thermodynamic baths to be probed.

Suggested Citation

  • D. Cattiaux & I. Golokolenov & S. Kumar & M. Sillanpää & L. Mercier de Lépinay & R. R. Gazizulin & X. Zhou & A. D. Armour & O. Bourgeois & A. Fefferman & E. Collin, 2021. "A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26457-8
    DOI: 10.1038/s41467-021-26457-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26457-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26457-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. D. Teufel & T. Donner & Dale Li & J. W. Harlow & M. S. Allman & K. Cicak & A. J. Sirois & J. D. Whittaker & K. W. Lehnert & R. W. Simmonds, 2011. "Sideband cooling of micromechanical motion to the quantum ground state," Nature, Nature, vol. 475(7356), pages 359-363, July.
    2. O. Arcizet & P.-F. Cohadon & T. Briant & M. Pinard & A. Heidmann, 2006. "Radiation-pressure cooling and optomechanical instability of a micromirror," Nature, Nature, vol. 444(7115), pages 71-74, November.
    3. C. F. Ockeloen-Korppi & E. Damskägg & J.-M. Pirkkalainen & M. Asjad & A. A. Clerk & F. Massel & M. J. Woolley & M. A. Sillanpää, 2018. "Stabilized entanglement of massive mechanical oscillators," Nature, Nature, vol. 556(7702), pages 478-482, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mingcai Xie & Hanyu Liu & Sushu Wan & Xuxing Lu & Daocheng Hong & Yu Du & Weiqing Yang & Zhihong Wei & Susu Fang & Chen-Lei Tao & Dan Xu & Boyang Wang & Siyu Lu & Xue-Jun Wu & Weigao Xu & Michel Orrit, 2022. "Ultrasensitive detection of local acoustic vibrations at room temperature by plasmon-enhanced single-molecule fluorescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Lukas Tenbrake & Alexander Faßbender & Sebastian Hofferberth & Stefan Linden & Hannes Pfeifer, 2024. "Direct laser-written optomechanical membranes in fiber Fabry-Perot cavities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Peipei Pan & Aixi Chen & Li Deng, 2023. "Improving Mechanical Oscillator Cooling in a Double-Coupled Cavity Optomechanical System with an Optical Parametric Amplifier," Mathematics, MDPI, vol. 11(9), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26457-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.