IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2218-d1142195.html
   My bibliography  Save this article

Improving Mechanical Oscillator Cooling in a Double-Coupled Cavity Optomechanical System with an Optical Parametric Amplifier

Author

Listed:
  • Peipei Pan

    (School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Aixi Chen

    (School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Li Deng

    (School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract

We investigate the cooling phenomenon of a mechanical oscillator in a double-coupled cavity optomechanical system. Our model includes two single-mode optical cavities. The left cavity is an optomechanical system with an optical parametric amplifier, and the right cavity is a standard optical cavity. The two optical cavities couple with each other by exchanging photons. The optomechanical system is effectively driven by an input laser field. By solving the linear quantum Langevin equation of the system under a steady-state condition, we can obtain the position fluctuation spectrum and momentum fluctuation spectrum of the mechanical oscillator, and then, the expression of its effective temperature is obtained. Through numerical analysis, we find the change in the effective temperature of the mechanical oscillator under different physical parameters. The results show that the cooling of the mechanical oscillator can be significantly improved in the presence of optical parameter amplification and adjustment of optical cavity parameters. Our cooling solutions have potential applications for the preparation of nonclassical states of mechanical oscillators, high-precision measurements, and quantum information processing.

Suggested Citation

  • Peipei Pan & Aixi Chen & Li Deng, 2023. "Improving Mechanical Oscillator Cooling in a Double-Coupled Cavity Optomechanical System with an Optical Parametric Amplifier," Mathematics, MDPI, vol. 11(9), pages 1-12, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2218-:d:1142195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jasper Chan & T. P. Mayer Alegre & Amir H. Safavi-Naeini & Jeff T. Hill & Alex Krause & Simon Gröblacher & Markus Aspelmeyer & Oskar Painter, 2011. "Laser cooling of a nanomechanical oscillator into its quantum ground state," Nature, Nature, vol. 478(7367), pages 89-92, October.
    2. Massimiliano Rossi & David Mason & Junxin Chen & Yeghishe Tsaturyan & Albert Schliesser, 2018. "Measurement-based quantum control of mechanical motion," Nature, Nature, vol. 563(7729), pages 53-58, November.
    3. O. Arcizet & P.-F. Cohadon & T. Briant & M. Pinard & A. Heidmann, 2006. "Radiation-pressure cooling and optomechanical instability of a micromirror," Nature, Nature, vol. 444(7115), pages 71-74, November.
    4. S. Gigan & H. R. Böhm & M. Paternostro & F. Blaser & G. Langer & J. B. Hertzberg & K. C. Schwab & D. Bäuerle & M. Aspelmeyer & A. Zeilinger, 2006. "Self-cooling of a micromirror by radiation pressure," Nature, Nature, vol. 444(7115), pages 67-70, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. M. J. Bereyhi & A. Beccari & R. Groth & S. A. Fedorov & A. Arabmoheghi & T. J. Kippenberg & N. J. Engelsen, 2022. "Hierarchical tensile structures with ultralow mechanical dissipation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. André G. Primo & Pedro V. Pinho & Rodrigo Benevides & Simon Gröblacher & Gustavo S. Wiederhecker & Thiago P. Mayer Alegre, 2023. "Dissipative optomechanics in high-frequency nanomechanical resonators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    7. Roel Burgwal & Ewold Verhagen, 2023. "Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. D. Cattiaux & I. Golokolenov & S. Kumar & M. Sillanpää & L. Mercier de Lépinay & R. R. Gazizulin & X. Zhou & A. D. Armour & O. Bourgeois & A. Fefferman & E. Collin, 2021. "A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    9. Stefano Stassi & Ido Cooperstein & Mauro Tortello & Candido Fabrizio Pirri & Shlomo Magdassi & Carlo Ricciardi, 2021. "Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Shengyan Liu & Hao Tong & Kejie Fang, 2022. "Optomechanical crystal with bound states in the continuum," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Lukas Tenbrake & Alexander Faßbender & Sebastian Hofferberth & Stefan Linden & Hannes Pfeifer, 2024. "Direct laser-written optomechanical membranes in fiber Fabry-Perot cavities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Faghihi, Mohammad Javad & Baghshahi, Hamid Reza & Mahmoudi, Hajar, 2023. "Nonclassical correlations in lossy cavity optomechanics with intensity-dependent coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2218-:d:1142195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.