IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20803-y.html
   My bibliography  Save this article

Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics

Author

Listed:
  • Choong Yeon Kim

    (Korea Advanced Institute of Science and Technology)

  • Min Jeong Ku

    (Yonsei University College of Medicine)

  • Raza Qazi

    (Korea Advanced Institute of Science and Technology
    University of Colorado)

  • Hong Jae Nam

    (Korea Advanced Institute of Science and Technology)

  • Jong Woo Park

    (Yonsei University College of Medicine)

  • Kum Seok Nam

    (Korea Advanced Institute of Science and Technology)

  • Shane Oh

    (Korea Advanced Institute of Science and Technology)

  • Inho Kang

    (Korea Advanced Institute of Science and Technology)

  • Jae-Hyung Jang

    (Yonsei University)

  • Wha Young Kim

    (Yonsei University College of Medicine)

  • Jeong-Hoon Kim

    (Yonsei University College of Medicine)

  • Jae-Woong Jeong

    (Korea Advanced Institute of Science and Technology)

Abstract

Optogenetics is a powerful technique that allows target-specific spatiotemporal manipulation of neuronal activity for dissection of neural circuits and therapeutic interventions. Recent advances in wireless optogenetics technologies have enabled investigation of brain circuits in more natural conditions by releasing animals from tethered optical fibers. However, current wireless implants, which are largely based on battery-powered or battery-free designs, still limit the full potential of in vivo optogenetics in freely moving animals by requiring intermittent battery replacement or a special, bulky wireless power transfer system for continuous device operation, respectively. To address these limitations, here we present a wirelessly rechargeable, fully implantable, soft optoelectronic system that can be remotely and selectively controlled using a smartphone. Combining advantageous features of both battery-powered and battery-free designs, this device system enables seamless full implantation into animals, reliable ubiquitous operation, and intervention-free wireless charging, all of which are desired for chronic in vivo optogenetics. Successful demonstration of the unique capabilities of this device in freely behaving rats forecasts its broad and practical utilities in various neuroscience research and clinical applications.

Suggested Citation

  • Choong Yeon Kim & Min Jeong Ku & Raza Qazi & Hong Jae Nam & Jong Woo Park & Kum Seok Nam & Shane Oh & Inho Kang & Jae-Hyung Jang & Wha Young Kim & Jeong-Hoon Kim & Jae-Woong Jeong, 2021. "Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20803-y
    DOI: 10.1038/s41467-020-20803-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20803-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20803-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young-Jin Park & Ji-Eun Kim & Kyung-Min Na & Ki-Dong Yang & Kyung-Hwan Cho, 2021. "Optimization and Analysis of Multilayer Planar Spiral Coils for the Application of Magnetic Resonance Wireless Power Transfer to Wearable Devices," Energies, MDPI, vol. 14(16), pages 1-19, August.
    2. Vidal, João V. & Rolo, Pedro & Carneiro, Pedro M.R. & Peres, Inês & Kholkin, Andrei L. & Soares dos Santos, Marco P., 2022. "Automated electromagnetic generator with self-adaptive structure by coil switching," Applied Energy, Elsevier, vol. 325(C).
    3. Lizhu Li & Lihui Lu & Yuqi Ren & Guo Tang & Yu Zhao & Xue Cai & Zhao Shi & He Ding & Changbo Liu & Dali Cheng & Yang Xie & Huachun Wang & Xin Fu & Lan Yin & Minmin Luo & Xing Sheng, 2022. "Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20803-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.