IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19987-0.html
   My bibliography  Save this article

A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator

Author

Listed:
  • Sicheng Liu

    (Northeast Forestry University
    Northeast Forestry University)

  • Xi Liu

    (Northeast Forestry University
    Northeast Forestry University)

  • Guilin Zhou

    (Northeast Forestry University
    Northeast Forestry University)

  • Fuxiang Qin

    (Northeast Forestry University
    Northeast Forestry University)

  • Mingxing Jing

    (Northeast Forestry University
    Northeast Forestry University)

  • Lin Li

    (Harbin Normal University)

  • Wenlong Song

    (Northeast Forestry University
    Northeast Forestry University)

  • Zhuangzhi Sun

    (Northeast Forestry University
    Northeast Forestry University)

Abstract

Currently, the key challenge in triboelectric nanogenerators (TENGs) is how to efficiently enhance the surface charge density. Here, a new strategy is proposed to increase the surface charge density by comprehensively utilizing solar energy and tidal energy, and a bioinspired photoelectric-electromechanical integrated TENG (Pem-iTENG) is developed. This enhancement of output performance is greatly attributed to the accumulation of photoelectrons from photocatalysis and the triboelectric negative charges from contact electrification. Pem-iTENG shows a maximal open-circuit voltage of 124.2 V and a maximal short-circuit current density of 221.6 μA cm−2 under tidal wave and sunlight, an improvement by nearly a factor of 10 over that of reported TENGs based on solid-liquid contact electrification. More importantly, it exhibits a high energy conversion efficiency according to the evaluation method for solar cells. This work provides insights into development of high-performance TENGs by using different natural energy sources.

Suggested Citation

  • Sicheng Liu & Xi Liu & Guilin Zhou & Fuxiang Qin & Mingxing Jing & Lin Li & Wenlong Song & Zhuangzhi Sun, 2020. "A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19987-0
    DOI: 10.1038/s41467-020-19987-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19987-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19987-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuangzhi Sun & Chuanlong Han & Shouwei Gao & Zhaoxin Li & Mingxing Jing & Haipeng Yu & Zuankai Wang, 2022. "Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Guo, Rui & Zhuo, Kai & Li, Qiang & Wang, Tao & Sang, Shengbo & Zhang, Hulin, 2023. "Triboelectric-electromagnetic hybrid generator assisted by a shape memory alloy wire for water quality monitoring and waste heat collecting," Applied Energy, Elsevier, vol. 348(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19987-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.