IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19511-4.html
   My bibliography  Save this article

Spin-orbit torque switching of an antiferromagnetic metallic heterostructure

Author

Listed:
  • Samik DuttaGupta

    (Tohoku University
    Tohoku University
    Tohoku University)

  • A. Kurenkov

    (Tohoku University
    Tohoku University
    Tohoku University)

  • Oleg A. Tretiakov

    (The University of New South Wales)

  • G. Krishnaswamy

    (ETH Zurich)

  • G. Sala

    (ETH Zurich)

  • V. Krizakova

    (ETH Zurich)

  • F. Maccherozzi

    (Diamond Light Source, Chilton)

  • S. S. Dhesi

    (Diamond Light Source, Chilton)

  • P. Gambardella

    (ETH Zurich)

  • S. Fukami

    (Tohoku University
    Tohoku University
    Tohoku University
    Tohoku University)

  • H. Ohno

    (Tohoku University
    Tohoku University
    Tohoku University
    Tohoku University)

Abstract

The ability to represent information using an antiferromagnetic material is attractive for future antiferromagnetic spintronic devices. Previous studies have focussed on the utilization of antiferromagnetic materials with biaxial magnetic anisotropy for electrical manipulation. A practical realization of these antiferromagnetic devices is limited by the requirement of material-specific constraints. Here, we demonstrate current-induced switching in a polycrystalline PtMn/Pt metallic heterostructure. A comparison of electrical transport measurements in PtMn with and without the Pt layer, corroborated by x-ray imaging, reveals reversible switching of the thermally-stable antiferromagnetic Néel vector by spin-orbit torques. The presented results demonstrate the potential of polycrystalline metals for antiferromagnetic spintronics.

Suggested Citation

  • Samik DuttaGupta & A. Kurenkov & Oleg A. Tretiakov & G. Krishnaswamy & G. Sala & V. Krizakova & F. Maccherozzi & S. S. Dhesi & P. Gambardella & S. Fukami & H. Ohno, 2020. "Spin-orbit torque switching of an antiferromagnetic metallic heterostructure," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19511-4
    DOI: 10.1038/s41467-020-19511-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19511-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19511-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijun Zhu & Daniel C. Ralph, 2023. "Strong variation of spin-orbit torques with relative spin relaxation rates in ferrimagnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Sihao Deng & Olena Gomonay & Jie Chen & Gerda Fischer & Lunhua He & Cong Wang & Qingzhen Huang & Feiran Shen & Zhijian Tan & Rui Zhou & Ze Hu & Libor Šmejkal & Jairo Sinova & Wolfgang Wernsdorfer & Ch, 2024. "Phase transitions associated with magnetic-field induced topological orbital momenta in a non-collinear antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Hidetoshi Masuda & Takeshi Seki & Jun-ichiro Ohe & Yoichi Nii & Hiroto Masuda & Koki Takanashi & Yoshinori Onose, 2024. "Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19511-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.