IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18182-5.html
   My bibliography  Save this article

Single atom catalysis: a decade of stunning progress and the promise for a bright future

Author

Listed:
  • Sharon Mitchell

    (Institute for Chemical and Bioengineering)

  • Javier Pérez-Ramírez

    (Institute for Chemical and Bioengineering)

Abstract

Controlling the hybridization of single atoms in suitable host materials opens unique opportunities for catalyst design, but equally faces many challenges. Here, we highlight emerging directions from the last, highly productive, decade in single-atom catalysis and identify frontiers for future research.

Suggested Citation

  • Sharon Mitchell & Javier Pérez-Ramírez, 2020. "Single atom catalysis: a decade of stunning progress and the promise for a bright future," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18182-5
    DOI: 10.1038/s41467-020-18182-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18182-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18182-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles E. Creissen & Marc Fontecave, 2022. "Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    2. Zihao Zhang & Jinshu Tian & Yubing Lu & Shize Yang & Dong Jiang & Weixin Huang & Yixiao Li & Jiyun Hong & Adam S. Hoffman & Simon R. Bare & Mark H. Engelhard & Abhaya K. Datye & Yong Wang, 2023. "Memory-dictated dynamics of single-atom Pt on CeO2 for CO oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Manu Suvarna & Alain Claude Vaucher & Sharon Mitchell & Teodoro Laino & Javier Pérez-Ramírez, 2023. "Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Limei Qin & Jie Gan & Dechao Niu & Yueqiang Cao & Xuezhi Duan & Xing Qin & Hao Zhang & Zheng Jiang & Yongjun Jiang & Sheng Dai & Yongsheng Li & Jianlin Shi, 2022. "Interfacial-confined coordination to single-atom nanotherapeutics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18182-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.