IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14824-w.html
   My bibliography  Save this article

Response outcomes gate the impact of expectations on perceptual decisions

Author

Listed:
  • Ainhoa Hermoso-Mendizabal

    (Institut dʹInvestigacions Biomèdiques August Pi i Sunyer (IDIBAPS))

  • Alexandre Hyafil

    (Institut dʹInvestigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
    Center for Brain and Cognition, Universitat Pompeu Fabra
    Campus de Bellaterra)

  • Pavel E. Rueda-Orozco

    (Instituto de Neurobiología, UNAM)

  • Santiago Jaramillo

    (Institute of Neuroscience, University of Oregon)

  • David Robbe

    (Aix Marseille Univ, INSERM, INMED)

  • Jaime Rocha

    (Institut dʹInvestigacions Biomèdiques August Pi i Sunyer (IDIBAPS))

Abstract

Perceptual decisions are based on sensory information but can also be influenced by expectations built from recent experiences. Can the impact of expectations be flexibly modulated based on the outcome of previous decisions? Here, rats perform an auditory task where the probability to repeat the previous stimulus category is varied in trial-blocks. All rats capitalize on these sequence correlations by exploiting a transition bias: a tendency to repeat or alternate their previous response using an internal estimate of the sequence repeating probability. Surprisingly, this bias is null after error trials. The internal estimate however is not reset and it becomes effective again after the next correct response. This behavior is captured by a generative model, whereby a reward-driven modulatory signal gates the impact of the latent model of the environment on the current decision. These results demonstrate that, based on previous outcomes, rats flexibly modulate how expectations influence their decisions.

Suggested Citation

  • Ainhoa Hermoso-Mendizabal & Alexandre Hyafil & Pavel E. Rueda-Orozco & Santiago Jaramillo & David Robbe & Jaime Rocha, 2020. "Response outcomes gate the impact of expectations on perceptual decisions," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14824-w
    DOI: 10.1038/s41467-020-14824-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14824-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14824-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diksha Gupta & Brian DePasquale & Charles D. Kopec & Carlos D. Brody, 2024. "Trial-history biases in evidence accumulation can give rise to apparent lapses in decision-making," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Anne E. Urai & Tobias H. Donner, 2022. "Persistent activity in human parietal cortex mediates perceptual choice repetition bias," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Lluís Hernández-Navarro & Ainhoa Hermoso-Mendizabal & Daniel Duque & Jaime de la Rocha & Alexandre Hyafil, 2021. "Proactive and reactive accumulation-to-bound processes compete during perceptual decisions," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Andrew Mah & Shannon S. Schiereck & Veronica Bossio & Christine M. Constantinople, 2023. "Distinct value computations support rapid sequential decisions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. I. Hachen & S. Reinartz & R. Brasselet & A. Stroligo & M. E. Diamond, 2021. "Dynamics of history-dependent perceptual judgment," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14824-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.