IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11970-8.html
   My bibliography  Save this article

Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction

Author

Listed:
  • Jiankang Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhe Gao

    (Chinese Academy of Sciences)

  • Sen Wang

    (Chinese Academy of Sciences)

  • Guofu Wang

    (Chinese Academy of Sciences)

  • Xiaofeng Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Baiyan Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shuangfeng Xing

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shichao Zhao

    (Chinese Academy of Sciences)

  • Yong Qin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The synergistic nature of bicomponent catalysts remains a challenging issue, due to the difficulty in constructing well-defined catalytic systems. Here we study the origin of synergistic effects in CoOx-Pt catalysts for selective hydrogenation by designing a series of closely contacted CoOxPt/TiO2 and spatially separated CoOx/TiO2/Pt catalysts by atomic layer deposition (ALD). For CoOx/TiO2/Pt, CoOx and platinum are separated by the walls of titania nanotubes, and the CoOx-Pt intimacy can be precisely tuned. Like CoOxPt/TiO2, the CoOx/TiO2/Pt shows higher selectivity to cinnamyl alcohol than monometallic TiO2/Pt, indicating that the CoOx-Pt nanoscale intimacy almost has no influence on the selectivity. The enhanced selectivity is ascribed to the increased oxygen vacancy resulting from the promoted hydrogen spillover. Moreover, platinum-oxygen vacancy interfacial sites are identified as the active sites by selectively covering CoOx or platinum by ALD. Our study provides a guide for the understanding of synergistic nature in bicomponent and bifunctional catalysts.

Suggested Citation

  • Jiankang Zhang & Zhe Gao & Sen Wang & Guofu Wang & Xiaofeng Gao & Baiyan Zhang & Shuangfeng Xing & Shichao Zhao & Yong Qin, 2019. "Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11970-8
    DOI: 10.1038/s41467-019-11970-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11970-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11970-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingwu Tan & Yanling Yang & Ying Yang & Jiali Chen & Zhaoxia Zhang & Gang Fu & Jingdong Lin & Shaolong Wan & Shuai Wang & Yong Wang, 2022. "Hydrogen spillover assisted by oxygenate molecules over nonreducible oxides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Tianjiao Wang & Yu Xin & Bingfeng Chen & Bin Zhang & Sen Luan & Minghua Dong & Yuxuan Wu & Xiaomeng Cheng & Ye Liu & Huizhen Liu & Buxing Han, 2024. "Selective hydrodeoxygenation of α, β-unsaturated carbonyl compounds to alkenes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yi Wang & Rong Yang & Yajun Ding & Bo Zhang & Hao Li & Bing Bai & Mingrun Li & Yi Cui & Jianping Xiao & Zhong-Shuai Wu, 2023. "Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Zhida Gu & Mengke Li & Cheng Chen & Xinglong Zhang & Chengyang Luo & Yutao Yin & Ruifa Su & Suoying Zhang & Yu Shen & Yu Fu & Weina Zhang & Fengwei Huo, 2023. "Water-assisted hydrogen spillover in Pt nanoparticle-based metal–organic framework composites," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11970-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.