IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11110-2.html
   My bibliography  Save this article

Evolution of tropical cyclone genesis regions during the Cenozoic era

Author

Listed:
  • Qing Yan

    (Chinese Academy of Sciences
    Chinese Academy of Sciences (CAS)
    Nanjing University of Information Science and Technology)

  • Robert Korty

    (Texas A&M University)

  • Zhongshi Zhang

    (China University of Geosciences
    Bjerknes Center for Climate Research)

  • Huijun Wang

    (Nanjing University of Information Science and Technology)

Abstract

How the substantial climate shifts of the Cenozoic era shaped the geographical distribution of tropical cyclone genesis remains unknown. Through a set of coupled model simulations, we demonstrate that conditions during the warmer Early Eocene are more favorable for storm formation over the Southern Hemisphere, particularly the South Indian Ocean. As the climate cools, there is an increasing favorability for genesis in the Northern Hemisphere and a coincident decrease in the Southern Hemisphere over time, with the locations most conducive to storms migrating equatorward in both hemispheres. A shift in the most favorable conditions to the western North Pacific likely occurs during the Pliocene, largely due to the closure of the tropical seaways, and marks the final establishment of modern tropical cyclone distribution. The substantial variations of genesis regions in the Cenozoic may affect upper-ocean vertical mixing and hence tropical/global climate, but are missed in most current deep-time simulations.

Suggested Citation

  • Qing Yan & Robert Korty & Zhongshi Zhang & Huijun Wang, 2019. "Evolution of tropical cyclone genesis regions during the Cenozoic era," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11110-2
    DOI: 10.1038/s41467-019-11110-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11110-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11110-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavan Harika Raavi & Jung-Eun Chu & Axel Timmermann & Sun-Seon Lee & Kevin J. E. Walsh, 2023. "Moisture control of tropical cyclones in high-resolution simulations of paleoclimate and future climate," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11110-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.