IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10392-w.html
   My bibliography  Save this article

Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction

Author

Listed:
  • Jun Di

    (Nanyang Technological University)

  • Chao Chen

    (Nanyang Technological University)

  • Shi-Ze Yang

    (Oak Ridge National Laboratory)

  • Shuangming Chen

    (University of Science and Technology of China)

  • Meilin Duan

    (University of Science and Technology of China)

  • Jun Xiong

    (Jiangsu University)

  • Chao Zhu

    (Nanyang Technological University)

  • Ran Long

    (University of Science and Technology of China)

  • Wei Hao

    (Nanyang Technological University)

  • Zhen Chi

    (Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Hailong Chen

    (Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Yu-Xiang Weng

    (Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences)

  • Jiexiang Xia

    (Jiangsu University)

  • Li Song

    (University of Science and Technology of China)

  • Shuzhou Li

    (Nanyang Technological University)

  • Huaming Li

    (Jiangsu University)

  • Zheng Liu

    (Nanyang Technological University)

Abstract

The design of efficient and stable photocatalysts for robust CO2 reduction without sacrifice reagent or extra photosensitizer is still challenging. Herein, a single-atom catalyst of isolated single atom cobalt incorporated into Bi3O4Br atomic layers is successfully prepared. The cobalt single atoms in the Bi3O4Br favors the charge transition, carrier separation, CO2 adsorption and activation. It can lower the CO2 activation energy barrier through stabilizing the COOH* intermediates and tune the rate-limiting step from the formation of adsorbed intermediate COOH* to be CO* desorption. Taking advantage of cobalt single atoms and two-dimensional ultrathin Bi3O4Br atomic layers, the optimized catalyst can perform light-driven CO2 reduction with a selective CO formation rate of 107.1 µmol g−1 h−1, roughly 4 and 32 times higher than that of atomic layer Bi3O4Br and bulk Bi3O4Br, respectively.

Suggested Citation

  • Jun Di & Chao Chen & Shi-Ze Yang & Shuangming Chen & Meilin Duan & Jun Xiong & Chao Zhu & Ran Long & Wei Hao & Zhen Chi & Hailong Chen & Yu-Xiang Weng & Jiexiang Xia & Li Song & Shuzhou Li & Huaming L, 2019. "Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10392-w
    DOI: 10.1038/s41467-019-10392-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10392-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10392-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Zhou & Zhiqing Wang & Aohan Mei & Zifan Yang & Wen Chen & Siyong Ou & Shengyao Wang & Keqiang Chen & Peter Reiss & Kun Qi & Jingyuan Ma & Yueli Liu, 2023. "Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Peng, Wanxi & Chuong Nguyen, Thi Hong & Nguyen, Dang Le Tri & Wang, Ting & Van Thi Tran, Thi & Le, Trung Hieu & Le, Hai Khoa & Grace, Andrews Nirmala & Singh, Pardeep & Raizadaa, Pankaj & Nguyen Dinh,, 2021. "A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Xuezhen Feng & Renji Zheng & Caiyan Gao & Wenfei Wei & Jiangguli Peng & Ranhao Wang & Songhe Yang & Wensong Zou & Xiaoyong Wu & Yongfei Ji & Hong Chen, 2022. "Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Yan Shen & Chunjin Ren & Lirong Zheng & Xiaoyong Xu & Ran Long & Wenqing Zhang & Yong Yang & Yongcai Zhang & Yingfang Yao & Haoqiang Chi & Jinlan Wang & Qing Shen & Yujie Xiong & Zhigang Zou & Yong Zh, 2023. "Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Yanbiao Shi & Jie Li & Chengliang Mao & Song Liu & Xiaobing Wang & Xiufan Liu & Shengxi Zhao & Xiao Liu & Yanqiang Huang & Lizhi Zhang, 2021. "Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10392-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.