IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09776-9.html
   My bibliography  Save this article

Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale

Author

Listed:
  • Elizabeth J. Kendon

    (Met Office Hadley Centre, Fitzroy Road)

  • Rachel A. Stratton

    (Met Office Hadley Centre, Fitzroy Road)

  • Simon Tucker

    (Met Office Hadley Centre, Fitzroy Road)

  • John H. Marsham

    (Institute for Climate and Atmospheric Science, University of Leeds)

  • Ségolène Berthou

    (Met Office Hadley Centre, Fitzroy Road)

  • David P. Rowell

    (Met Office Hadley Centre, Fitzroy Road)

  • Catherine A. Senior

    (Met Office Hadley Centre, Fitzroy Road)

Abstract

African society is particularly vulnerable to climate change. The representation of convection in climate models has so far restricted our ability to accurately simulate African weather extremes, limiting climate change predictions. Here we show results from climate change experiments with a convection-permitting (4.5 km grid-spacing) model, for the first time over an Africa-wide domain (CP4A). The model realistically captures hourly rainfall characteristics, unlike coarser resolution models. CP4A shows greater future increases in extreme 3-hourly precipitation compared to a convection-parameterised 25 km model (R25). CP4A also shows future increases in dry spell length during the wet season over western and central Africa, weaker or not apparent in R25. These differences relate to the more realistic representation of convection in CP4A, and its response to increasing atmospheric moisture and stability. We conclude that, with the more accurate representation of convection, projected changes in both wet and dry extremes over Africa may be more severe.

Suggested Citation

  • Elizabeth J. Kendon & Rachel A. Stratton & Simon Tucker & John H. Marsham & Ségolène Berthou & David P. Rowell & Catherine A. Senior, 2019. "Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09776-9
    DOI: 10.1038/s41467-019-09776-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09776-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09776-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamish Steptoe & Claire Souch & Julia Slingo, 2022. "Advances in numerical weather prediction, data science, and open‐source software herald a paradigm shift in catastrophe risk modeling and insurance underwriting," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(1), pages 69-81, April.
    2. Fahad Alzahrani & Ousmane Seidou & Abdullah Alodah, 2022. "Assessment and Improvement of IDF Generation Algorithms Used in the IDF_CC Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4591-4606, September.
    3. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    4. Rory G. J. Fitzpatrick & Douglas J. Parker & John H. Marsham & David P. Rowell & Lawrence S. Jackson & Declan Finney & Chetan Deva & Simon Tucker & Rachael Stratton, 2020. "How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model," Climatic Change, Springer, vol. 163(1), pages 267-296, November.
    5. Ponnambalam Rameshwaran & Victoria A. Bell & Helen N. Davies & Alison L. Kay, 2021. "How might climate change affect river flows across West Africa?," Climatic Change, Springer, vol. 169(3), pages 1-27, December.
    6. Emmanuel Kasongo Yakusu & Joris Van Acker & Hans Van de Vyver & Nils Bourland & José Mbifo Ndiapo & Théophile Besango Likwela & Michel Lokonda Wa Kipifo & Amand Mbuya Kankolongo & Jan Van den Bulcke &, 2023. "Ground-based climate data show evidence of warming and intensification of the seasonal rainfall cycle during the 1960–2020 period in Yangambi, central Congo Basin," Climatic Change, Springer, vol. 176(10), pages 1-28, October.
    7. Mulungu, Kelvin & Kilimani, Nicholas, 2023. "Does forest access reduce reliance on costly shock-coping strategies? Evidence from Malawi," Ecological Economics, Elsevier, vol. 209(C).
    8. Lisa Murken & Gregor Mager & Rahel Laudien & Kati Kraehnert & Christoph Gornott, 2024. "The Impact of Weather Risk on Tenure Security: Evidence from Smallholder Farmers in Tanzania," Land Economics, University of Wisconsin Press, vol. 100(4), pages 668-689.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09776-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.