IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08667-3.html
   My bibliography  Save this article

A Pólya urn approach to information filtering in complex networks

Author

Listed:
  • Riccardo Marcaccioli

    (University College London)

  • Giacomo Livan

    (University College London
    London School of Economics and Political Sciences)

Abstract

The increasing availability of data demands for techniques to filter information in large complex networks of interactions. A number of approaches have been proposed to extract network backbones by assessing the statistical significance of links against null hypotheses of random interaction. Yet, it is well known that the growth of most real-world networks is non-random, as past interactions between nodes typically increase the likelihood of further interaction. Here, we propose a filtering methodology inspired by the Pólya urn, a combinatorial model driven by a self-reinforcement mechanism, which relies on a family of null hypotheses that can be calibrated to assess which links are statistically significant with respect to a given network’s own heterogeneity. We provide a full characterization of the filter, and show that it selects links based on a non-trivial interplay between their local importance and the importance of the nodes they belong to.

Suggested Citation

  • Riccardo Marcaccioli & Giacomo Livan, 2019. "A Pólya urn approach to information filtering in complex networks," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08667-3
    DOI: 10.1038/s41467-019-08667-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08667-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08667-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katerina Rigana & Ernst-Jan Camiel Wit & Samantha Cook, 2021. "Using Network-based Causal Inference to Detect the Sources of Contagion in the Currency Market," Papers 2112.13127, arXiv.org.
    2. Yanquen, Eduardo & Livan, Giacomo & Montañez-Enriquez, Ricardo & Martinez-Jaramillo, Serafin, 2022. "Measuring systemic risk for bank credit networks: A multilayer approach," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(2).
    3. Caceres-Santos, Jonnathan & Rodriguez-Martinez, Anahi & Caccioli, Fabio & Martinez-Jaramillo, Serafin, 2020. "Systemic risk and other interdependencies among banks in Bolivia," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    4. Giuseppe Brandi & T. Di Matteo, 2020. "A new multilayer network construction via Tensor learning," Papers 2004.05367, arXiv.org.
    5. Mehmet Ali Balcı & Larissa M. Batrancea & Ömer Akgüller & Anca Nichita, 2022. "Coarse Graining on Financial Correlation Networks," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    6. Jeremy D. Turiel & Tomaso Aste, 2019. "P2P Loan acceptance and default prediction with Artificial Intelligence," Papers 1907.01800, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08667-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.