IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i9d10.1038_s41558-019-0531-8.html
   My bibliography  Save this article

Persistent acceleration in global sea-level rise since the 1960s

Author

Listed:
  • Sönke Dangendorf

    (University of Siegen
    Old Dominion University)

  • Carling Hay

    (Boston College)

  • Francisco M. Calafat

    (National Oceanography Centre)

  • Marta Marcos

    (IMEDEA (UIB-CSIC))

  • Christopher G. Piecuch

    (Woods Hole Oceanographic Institution)

  • Kevin Berk

    (University of Siegen)

  • Jürgen Jensen

    (University of Siegen)

Abstract

Previous studies reconstructed twentieth-century global mean sea level (GMSL) from sparse tide-gauge records to understand whether the recent high rates obtained from satellite altimetry are part of a longer-term acceleration. However, these analyses used techniques that can only accurately capture either the trend or the variability in GMSL, but not both. Here we present an improved hybrid sea-level reconstruction during 1900–2015 that combines previous techniques at time scales where they perform best. We find a persistent acceleration in GMSL since the 1960s and demonstrate that this is largely (~76%) associated with sea-level changes in the Indo-Pacific and South Atlantic. We show that the initiation of the acceleration in the 1960s is tightly linked to an intensification and a basin-scale equatorward shift of Southern Hemispheric westerlies, leading to increased ocean heat uptake, and hence greater rates of GMSL rise, through changes in the circulation of the Southern Ocean.

Suggested Citation

  • Sönke Dangendorf & Carling Hay & Francisco M. Calafat & Marta Marcos & Christopher G. Piecuch & Kevin Berk & Jürgen Jensen, 2019. "Persistent acceleration in global sea-level rise since the 1960s," Nature Climate Change, Nature, vol. 9(9), pages 705-710, September.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:9:d:10.1038_s41558-019-0531-8
    DOI: 10.1038/s41558-019-0531-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0531-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0531-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matías Carvajal & Patricio Winckler & René Garreaud & Felipe Igualt & Manuel Contreras-López & Pamela Averil & Marco Cisternas & Alejandra Gubler & Wolfgang A. Breuer, 2021. "Extreme sea levels at Rapa Nui (Easter Island) during intense atmospheric rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(2), pages 1619-1637, March.
    2. Gao, Meng & Zhang, Aidi & Zhang, Han & Pang, Yufei & Wang, Yueqi, 2022. "Multifractality of global sea level heights in the satellite altimeter-era," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Théophile Bongarts Lebbe & Hélène Rey-Valette & Éric Chaumillon & Guigone Camus & Rafael Almar & Anny Cazenave & Joachim Claudet & Nicolas Rocle & Catherine Meur-Ferec & Frédérique Viard & Denis Merci, 2021. "Designing coastal adaptation strategies to tackle sea level rise," Post-Print hal-03412421, HAL.
    4. Denis L. Volkov & Kate Zhang & William E. Johns & Joshua K. Willis & Will Hobbs & Marlos Goes & Hong Zhang & Dimitris Menemenlis, 2023. "Atlantic meridional overturning circulation increases flood risk along the United States southeast coast," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Ben S. Hague & Andy J. Taylor, 2021. "Tide-only inundation: a metric to quantify the contribution of tides to coastal inundation under sea-level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 675-695, May.
    6. Sadaf Mahmoudi & Hamed Moftakhari & David F. Muñoz & William Sweet & Hamid Moradkhani, 2024. "Establishing flood thresholds for sea level rise impact communication," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:9:d:10.1038_s41558-019-0531-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.