IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v8y2018i6d10.1038_s41558-018-0160-7.html
   My bibliography  Save this article

Climate reddening increases the chance of critical transitions

Author

Listed:
  • Bregje Bolt

    (Wageningen University)

  • Egbert H. Nes

    (Wageningen University)

  • Sebastian Bathiany

    (Wageningen University)

  • Marlies E. Vollebregt

    (Wageningen University)

  • Marten Scheffer

    (Wageningen University)

Abstract

Climate change research often focuses on trends in the mean and variance. However, analyses of palaeoclimatic and contemporary dynamics reveal that climate memory — as measured for instance by temporal autocorrelation — may also change substantially over time. Here, we show that elevated temporal autocorrelation in climatic variables should be expected to increase the chance of critical transitions in climate-sensitive systems with tipping points. We demonstrate that this prediction is consistent with evidence from forests, coral reefs, poverty traps, violent conflict and ice sheet instability. In each example, the duration of anomalous dry or warm events elevates chances of invoking a critical transition. Understanding the effects of climate variability thus requires research not only on variance, but also on climate memory.

Suggested Citation

  • Bregje Bolt & Egbert H. Nes & Sebastian Bathiany & Marlies E. Vollebregt & Marten Scheffer, 2018. "Climate reddening increases the chance of critical transitions," Nature Climate Change, Nature, vol. 8(6), pages 478-484, June.
  • Handle: RePEc:nat:natcli:v:8:y:2018:i:6:d:10.1038_s41558-018-0160-7
    DOI: 10.1038/s41558-018-0160-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0160-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0160-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sundstrom, Shana M. & Angeler, David G. & Allen, Craig R., 2023. "Resilience theory and coerced resilience in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    2. , European Marine Board & Boero, Ferdinando & Cummins, Valerie & Gault, Jeremy & Huse, Geir & Philippart, Catharina & Schneider, Ralph & Besiktepe, Sukru & Boeuf, Gilles & Coll, Marta, 2019. "Navigating the Future V: Marine Science for a Sustainable Future," MarXiv vps62, Center for Open Science.
    3. Taylor Smith & Niklas Boers, 2023. "Global vegetation resilience linked to water availability and variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Tongbi Tu & Lise Comte & Albert Ruhi, 2023. "The color of environmental noise in river networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:8:y:2018:i:6:d:10.1038_s41558-018-0160-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.