IDEAS home Printed from https://ideas.repec.org/a/mes/emfitr/v57y2021i4p1068-1087.html
   My bibliography  Save this article

Predicting Oil Prices: An Analysis of Oil Price Volatility Cycle and Financial Markets

Author

Listed:
  • Lu-Tao Zhao
  • Zi-Jie Wang
  • Shu-Ping Wang
  • Ling-Yun He

Abstract

Given the importance of crude oil prices in the world economy, accurate price prediction has drawn extensive attention. Nevertheless, because of the complexity of the crude oil market, most traditional forecasting algorithms fail to meet the accuracy requirements. To achieve higher precision, this paper proposes a novel hybrid model for crude oil price forecasting by combining a Hodrick-Prescott filter with X12 methods and adjusting the order used. Application of our model on both West Texas Intermediate and Brent oil prices forecasting demonstrates its accuracy. The results of various forecasting performance evaluation criteria indicate that the model has stronger stability and better accuracy. The mechanism of seasonal and periodic factors is also analyzed, which provides remarkable references to other time-series predictions. Establishing two different types of predictive models that combine multiple knowledge effectively has obvious advantages over other models and provides more reliable cutting-edge information for designing a Chinese energy development strategy.

Suggested Citation

  • Lu-Tao Zhao & Zi-Jie Wang & Shu-Ping Wang & Ling-Yun He, 2021. "Predicting Oil Prices: An Analysis of Oil Price Volatility Cycle and Financial Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(4), pages 1068-1087, March.
  • Handle: RePEc:mes:emfitr:v:57:y:2021:i:4:p:1068-1087
    DOI: 10.1080/1540496X.2019.1706045
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1540496X.2019.1706045
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1540496X.2019.1706045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nan, Yu & Sun, Renjin & Zhen, Zhao & Fangjing, Chu, 2022. "Measurement of international crude oil price cyclical fluctuations and correlation with the world economic cyclical changes," Energy, Elsevier, vol. 260(C).
    2. Jakub Horák & Michaela Jannová, 2023. "Predicting the Oil Price Movement in Commodity Markets in Global Economic Meltdowns," Forecasting, MDPI, vol. 5(2), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mes:emfitr:v:57:y:2021:i:4:p:1068-1087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/MREE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.