Author
Listed:
- Yan Shi
(Central South University
Hunan Geospatial Information Engineering and Technology Research Center)
- Da Wang
(Central South University)
- Baoju Liu
(Central South University
Hunan Geospatial Information Engineering and Technology Research Center)
- Min Deng
(Central South University
Hunan Geospatial Information Engineering and Technology Research Center)
- Bingrong Chen
(Central South University)
Abstract
Urban road traffic congestion remains challenging due to global urbanisation and has caused travel delays, energy consumption, and detrimental emissions. Therefore, exploring the potential dominant factors associated with traffic congestion generation is necessary to mitigate traffic congestion. The built environment around congested areas is the core factor in the generation of traffic congestion, however, only a few considered the impact of human travel features on congested roads. We divided human travel factors into purpose- and movement-related factors and explored the nonlinear relationship between human travel factors and traffic congestion. The results from taxi travel in Wuhan show that travel purpose factors mostly impact traffic congestion on low-grade inner-city short roads, while movement factors mainly impact the periphery ring or high-grade long roads. Movement-dominant congestions are widespread but not severe. Severe traffic congestion occurs mainly due to purpose-dominant travel. For purpose-dominant congestions, all excessive POI visits may worsen traffic congestion, and higher POI mixing degree has a positive effect on reducing congestion. For movement-dominant congestions, the detour rate and congestion level show a positive dependence, and the whole travel distance and travel accomplished rate indicate a U-shaped nonlinear relationship with congestion. This study provides detailed partial dependence plots of how congestion varies with human travel factors, providing insights and locational indications for traffic participants and urban designers to reduce congestion and improve urban mobility.
Suggested Citation
Yan Shi & Da Wang & Baoju Liu & Min Deng & Bingrong Chen, 2025.
"Exploring the nonlinear relationships between human travel and road traffic congestions using taxi trajectory data,"
Transportation, Springer, vol. 52(5), pages 1827-1856, October.
Handle:
RePEc:kap:transp:v:52:y:2025:i:5:d:10.1007_s11116-024-10476-7
DOI: 10.1007/s11116-024-10476-7
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:5:d:10.1007_s11116-024-10476-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.