Author
Listed:
- Maliheh Tabasi
(The University of New South Wales)
- Ali Najmi
(The University of New South Wales)
- Eric J. Miller
(University of Toronto)
- C. Raina MacIntyre
(Arizona State University College of Health Solutions
The University of New South Wales)
- Taha H. Rashidi
(The University of New South Wales)
Abstract
The Delta variant of SARS-CoV-2, specifically identified as B.1.617.2, is responsible for the severe outbreaks witnessed globally, including in various countries and cities, with Sydney Greater Metropolitan Area (Sydney GMA) being no exception. According to scientific studies, the Delta strain exhibits increased contagion and leads to a higher incidence of vaccine breakthrough cases, posing significant challenges to pandemic control efforts. In this study, we explore the efficacy of three fundamental control strategies—namely, vaccination rates, adherence to facemask usage, and the management of travel loads—in mitigating the spread of the disease and, consequently, eliminating the Delta variant pandemic in Sydney GMA. We employ an agent-based disease spread model to thoroughly investigate these strategies. Moreover, factorial MANOVA is utilised to assess the significance of variations in the impact of diverse compliance levels with the aforementioned control strategies on various attributes of the pandemic. As complete lockdowns and stringent travel regulations have the potential to induce physical and mental distress in individuals and economic crises for countries, our study examines the interactive effects of implementing control strategies to mitigate the necessity for a full lockdown. The simulation results suggest that suppressing a pandemic with similar characteristics to Delta variant of COVID is feasible with a vaccination rate of 80% or higher, as long as travel load and activity participation are maintained at pre-COVID levels. Alternatively, a more realistic and attainable combination of control measures—a vaccination rate of 60%, a facemask usage level of 60%, and a 50% compliance level for social distancing—demonstrates comparable efficacy, leading to effective pandemic control. Notably, the vaccination rate emerges as a more potent control strategy compared to others in the elimination of the disease within society.
Suggested Citation
Maliheh Tabasi & Ali Najmi & Eric J. Miller & C. Raina MacIntyre & Taha H. Rashidi, 2025.
"Effectiveness of vaccination, travel load, and facemask use control strategies for controlling COVID Delta variant: the case of Sydney Metropolitan Area,"
Transportation, Springer, vol. 52(4), pages 1709-1743, August.
Handle:
RePEc:kap:transp:v:52:y:2025:i:4:d:10.1007_s11116-024-10471-y
DOI: 10.1007/s11116-024-10471-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:52:y:2025:i:4:d:10.1007_s11116-024-10471-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.