IDEAS home Printed from
   My bibliography  Save this article

Predicting House Prices Using Multiple Listings Data


  • Dubin, Robin A


It is often necessary to accurately predict the price of a house between sales. One method of predicting house values is to use data on the characteristics of the area's housing stock to estimate a hedonic regression, using ordinary least squares (OLS) as the statistical technique. The coefficients of this regression are then used to produce the predicted house prices. However, this procedure ignores a potentially large source of information regarding house prices--the correlations existing between the prices of neighboring houses. The purpose of this article is to show how these correlations can be incorporated when estimating regression coefficients and when predicting house prices. The practical difficulties inherent in using a technique called kriging to predict house prices are discussed. The article concludes with an example of the procedure using multiple listings data from Baltimore. Copyright 1998 by Kluwer Academic Publishers

Suggested Citation

  • Dubin, Robin A, 1998. "Predicting House Prices Using Multiple Listings Data," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 35-59, July.
  • Handle: RePEc:kap:jrefec:v:17:y:1998:i:1:p:35-59

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jrefec:v:17:y:1998:i:1:p:35-59. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.