IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Multiscale Analysis of Stock Index Return Volatility

Listed author(s):
  • Enrico Capobianco


    (CWI, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands)

Registered author(s):

    We present a study where wavelet approximation techniques and some related computational algorithms are applied to non-stationary high frequency financial times series. Wavelets represent a novel instrument as far as concerned applications in the finance setting, but have a great relevance in many domains, from physics to statistics. Thus, while one goal of the paper is to compare the numerical performance of global and local function optimizers, another goal is to try to show that ad hoc wavelet-based function dictionaries are very useful for financial modeling through signal decomposition and approximation. Detecting the latent dependence features which are typically found in high frequency financial returns is particularly important for the scope of proposing models which are able to achieve reliable results in parameter estimation and pointwise function prediction. We show that by pre-processing data with wavelet dictionaries we effectively account for hidden periodic components, whose discovery allows to attain and improve the feature extraction power. We refer to sparse approximation through the Matching Pursuit algorithm, thus handling the negative effects of covariance non-stationarity at very high frequencies.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer & Society for Computational Economics in its journal Computational Economics.

    Volume (Year): 23 (2004)
    Issue (Month): 3 (April)
    Pages: 219-237

    in new window

    Handle: RePEc:kap:compec:v:23:y:2004:i:3:p:219-237
    Contact details of provider: Web page:

    Web page:

    More information through EDIRC

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:23:y:2004:i:3:p:219-237. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.