IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v27y2008i6p519-535.html
   My bibliography  Save this article

The geometric combination of Bayesian forecasting models

Author

Listed:
  • A. E. Faria

    (Department of Mathematics and Statistics, The Open University, Milton Keynes, UK)

  • E. Mubwandarikwa

    (Department of Mathematics and Statistics, The Open University, Milton Keynes, UK)

Abstract

A nonlinear geometric combination of statistical models is proposed as an alternative approach to the usual linear combination or mixture. Contrary to the linear, the geometric model is closed under the regular exponential family of distributions, as we show. As a consequence, the distribution which results from the combination is unimodal and a single location parameter can be chosen for decision making. In the case of Student t-distributions (of particular interest in forecasting) the geometric combination can be unimodal under a sufficient condition we have established. A comparative analysis between the geometric and linear combinations of predictive distributions from three Bayesian regression dynamic linear models, in a case of beer sales forecasting in Zimbabwe, shows the geometric model to consistently outperform its linear counterpart as well as its component models. Copyright © 2008 John Wiley & Sons, Ltd.

Suggested Citation

  • A. E. Faria & E. Mubwandarikwa, 2008. "The geometric combination of Bayesian forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 519-535.
  • Handle: RePEc:jof:jforec:v:27:y:2008:i:6:p:519-535
    DOI: 10.1002/for.1071
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1071
    File Function: Link to full text; subscription required
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:bla:obuest:v:79:y:2017:i:4:p:495-512 is not listed on IDEAS
    2. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    3. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:27:y:2008:i:6:p:519-535. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.