Author
Listed:
- Dimitrios D. Thomakos
- Marilou Ioakimidis
- Konstantinos Eleftheriou
(National and Kapodistrian University of Athens, Greece
National and Kapodistrian University of Athens, Greece
University of Piraeus, Greece)
Abstract
Medical tourism is considered nowadays as a multi-billion industry which can promote a country's economic growth. Therefore, forecasting the scheduled tourism demand for medical services is of great importance for policy makers. Doing so, however, is not an easy task due to the following reasons: Data on medical tourism are (i) not easily accessible; (ii) not typically distinguished from tourists' non-scheduled (unintentional) use of a country's medical services; and (iii) usually not publicly available for long time periods. In this paper, we present a novel way to forecast tourism demand (intentional and unintentional) for medical services — a rough but informative proxy of medical tourism — using limited data. To perform the analysis, we use data on the percentage of hospital discharges of non-residents for 17 European countries over the period 2008-2019 retrieved from Eurostat. Our methodological approach is based on a forecasting technique recently developed by Kyriazi, Thomakos and Guerard; the adaptive learning forecasting. According to this method, MSE (Mean Squared Error)-performance enhancements can be achieved using any forecast as input — as long as that input is not a 'perfect' forecast — by learning from past forecast errors. Within this context, even the most basic forecast, the no-change or naïve forecast, can be used as input to the adaptive learning procedure. Kyriazi, Thomakos and Guerard approach is very well suited to our research question because (i) the no-change forecast is a natural candidate in a short time series where models cannot be estimated with sufficient accuracy, (ii) the no-change forecast is obviously far from being the 'perfect' forecast, and (iii) the adaptive learning process can be initialized by the no-change forecast and then learn by its own past forecast errors. Our results show that adaptive learning forecasting leads to performance enhancements that range from 5% to more than 20% relative to the no-change benchmark. This finding indicates the efficiency of the adaptive learning method in forecasting medical tourism demand; an important subcategory of tourism demand for which data are not easily accessible and freely available historical data exist for short time periods.
Suggested Citation
Dimitrios D. Thomakos & Marilou Ioakimidis & Konstantinos Eleftheriou, 2023.
"Forecasting Tourism Demand for Medical Services,"
Journal of Developing Areas, Tennessee State University, College of Business, vol. 57(3), pages 315-320, July-Sept.
Handle:
RePEc:jda:journl:vol.57:year:2023:issue3:pp:315-320
Download full text from publisher
More about this item
Keywords
;
;
;
;
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jda:journl:vol.57:year:2023:issue3:pp:315-320. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Abu N.M. Wahid (email available below). General contact details of provider: https://edirc.repec.org/data/cbtnsus.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.