IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2019-20-3.html
   My bibliography  Save this article

How Group Cohesion Promotes the Emergence of Cooperation in Public Goods Game Under Conditional Dissociation

Author

Listed:
  • Xinglong Qu
  • Zhigang Cao
  • Xiaoguang Yang
  • The Anh Han

Abstract

Leaving is usually an option for individuals if they cannot tolerate their defective partners. In a two-player game, when a player chooses to leave, both she and her opponent become single players. However, in a multi-player game, the same decision may have different consequences depending on whether group cohesion exists. Players who choose not to leave would still be united together rather than be separated into singletons if there is cohesion among them. Considering this difference, we study two leaving mechanisms in public goods games. In the first mechanism, every player would be single once any of the group members leaves. In the second, we assume group cohesion exists that members who don't leave form a union. In our model, each player adopts a trigger strategy characterized by a threshold: she leaves if the number of defectors in her group exceeds the threshold. We find that under both mechanisms, when the expected lifespan of individuals is long enough, cooperators with zero tolerance toward defection succeed in the evolution. Moreover, when cohesion exists in groups, cooperation is better promoted because the cooperators have a higher chance to play together. That is, group cohesion facilitates positive assortment and therefore promotes cooperation.

Suggested Citation

  • Xinglong Qu & Zhigang Cao & Xiaoguang Yang & The Anh Han, 2019. "How Group Cohesion Promotes the Emergence of Cooperation in Public Goods Game Under Conditional Dissociation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(3), pages 1-5.
  • Handle: RePEc:jas:jasssj:2019-20-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/22/3/5/5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Mei-huan & Wang, Li & Wang, Juan & Sun, Shi-wen & Xia, Cheng-yi, 2015. "Impact of individual response strategy on the spatial public goods game within mobile agents," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 192-202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadzibeganovic, Tarik & Liu, Chao & Li, Rong, 2021. "Effects of reproductive skew on the evolution of ethnocentrism in structured populations with variable size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    2. Jorge Higinio Maldonado & Rocío del Pilar Moreno-Sanchez, 2016. "Exacerbating the Tragedy of the Commons: Private Inefficient Outcomes and Peer Effect in Experimental Games with Fishing Communities," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    3. Shuhua Chang & Xinyu Wang & Zheng Wang, 2015. "Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-29, September.
    4. Shen, Chen & Li, Xiaoping & Shi, Lei & Deng, Zhenghong, 2017. "Asymmetric evaluation promotes cooperation in network population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 391-397.
    5. Bahbouhi, Jalal Eddine & Moussa, Najem, 2019. "A graph-based model for public goods with leaderships," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 53-61.
    6. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Li, Lan & Yuan, Lin & Jiang, Luo-Luo & Perc, Matjaž & Kurths, Jürgen, 2022. "Eliminating poverty through social mobility promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    7. Stefan Rass & Sandra König & Stefan Schauer, 2017. "Defending Against Advanced Persistent Threats Using Game-Theory," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-43, January.
    8. Liu, Chen & Guo, Hao & Li, Zhibin & Gao, Xiaoyuan & Li, Shudong, 2019. "Coevolution of multi-game resolves social dilemma in network population," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 402-407.
    9. Chen, Ya-Shan & Yang, Han-Xin & Guo, Wen-Zhong & Liu, Geng-Geng, 2018. "Promotion of cooperation based on swarm intelligence in spatial public goods games," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 614-620.
    10. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    11. Kurokawa, Shun, 2019. "How memory cost, switching cost, and payoff non-linearity affect the evolution of persistence," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 174-192.
    12. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2017. "Publishing the donation list incompletely promotes the emergence of cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 48-56.
    13. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    14. Jin, Jiahua & Chu, Chen & Shen, Chen & Guo, Hao & Geng, Yini & Jia, Danyang & Shi, Lei, 2018. "Heterogeneous fitness promotes cooperation in the spatial prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 141-146.
    15. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. You, Feng & Yang, Han-Xin & Li, Yumeng & Du, Wenbo & Wang, Gang, 2023. "A modified Vicsek model based on the evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    17. Yang, Han-Xin & Tang, Ming & Wang, Zhen, 2018. "Suppressing epidemic spreading by risk-averse migration in dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 347-352.
    18. Angela C M de Oliveira & John M Spraggon & Matthew J Denny, 2016. "Instrumenting Beliefs in Threshold Public Goods," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    19. Wang, Yufang & Wang, Haiyan & Zhang, Shuhua, 2018. "A weighted higher-order network analysis of fine particulate matter (PM2.5) transport in Yangtze River Delta," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 654-662.
    20. Ren, Yizhi & Chen, Xiangyu & Wang, Zhen & Shi, Benyun & Cui, Guanghai & Wu, Ting & Choo, Kim-Kwang Raymond, 2018. "Neighbor-considered migration facilitates cooperation in prisoner’s dilemma games," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 95-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2019-20-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.