IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2016-116-3.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Population Synthesis Based on Joint Distribution Inference Without Disaggregate Samples

Author

Listed:

Abstract

Synthetic population is a fundamental input to dynamic micro-simulation in social applications. Based on the review of current major approaches, this paper presents a new sample-free synthesis method by inferring joint distribution of the total target population. Convergence of multivariate Iterative Proportional Fitting used in our method is also proved theoretically. The method, together with other existing ones, is applied to generate a nationwide synthetic population database of China by using its overall cross-classification tables as well as a sample from census. Marginal and partial joint distribution consistencies of each database are compared and evaluated quantitatively. Final results manifest sample-based methods have better performances on marginal indicators while the sample-free ones match partial distributions more precisely. Among the five methods, our proposed method significantly reduces the computational cost for generating synthetic population in large scale. An open source implementation of the population synthesizer based on C# used in this research is available at https://github.com/PeijunYe/PopulationSynthesis.git.

Suggested Citation

  • Peijun Ye & Xiaolin Hu & Yong Yuan & Fei-Yue Wang, 2017. "Population Synthesis Based on Joint Distribution Inference Without Disaggregate Samples," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-16.
  • Handle: RePEc:jas:jasssj:2016-116-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/20/4/16/16.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachid Belaroussi & Younes Delhoum, 2024. "Forecasting Daily Activity Plans of a Synthetic Population in an Upcoming District," Forecasting, MDPI, vol. 6(2), pages 1-26, May.
    2. Jason Hawkins & Khandker Nurul Habib, 2023. "A multi-source data fusion framework for joint population, expenditure, and time use synthesis," Transportation, Springer, vol. 50(4), pages 1323-1346, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2016-116-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.