IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v43y1995i2p298-310.html
   My bibliography  Save this article

The Distributional Little's Law and Its Applications

Author

Listed:
  • Dimitris Bertsimas

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

  • Daisuke Nakazato

    (Massachusetts Institute of Technology, Cambridge, Massachusetts)

Abstract

This paper discusses the distributional Little's law and examines its applications in a variety of queueing systems. The distributional law relates the steady-state distributions of the number in the system (or in the queue) and the time spent in the system (or in the queue) in a queueing system under FIFO. We provide a new proof of the distributional law and in the process we generalize a well known theorem of Burke on the equality of pre-arrival and postdeparture probabilities. More importantly, we demonstrate that the distributional law has important algorithmic and structural applications and can be used to derive various performance characteristics of several queueing systems which admit distributional laws. As a result, we believe that the distributional law is a powerful tool for the derivation of performance measures in queueing systems and can lead to a certain unification of queueing theory.

Suggested Citation

  • Dimitris Bertsimas & Daisuke Nakazato, 1995. "The Distributional Little's Law and Its Applications," Operations Research, INFORMS, vol. 43(2), pages 298-310, April.
  • Handle: RePEc:inm:oropre:v:43:y:1995:i:2:p:298-310
    DOI: 10.1287/opre.43.2.298
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.43.2.298
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.43.2.298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianfu Wang & Opher Baron & Alan Scheller-Wolf, 2015. "M/M/c Queue with Two Priority Classes," Operations Research, INFORMS, vol. 63(3), pages 733-749, June.
    2. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    3. Mor Harchol-Balter & Takayuki Osogami & Alan Scheller-Wolf & Adam Wierman, 2005. "Multi-Server Queueing Systems with Multiple Priority Classes," Queueing Systems: Theory and Applications, Springer, vol. 51(3), pages 331-360, December.
    4. Nam K. Kim & Kyung C. Chae & Mohan L. Chaudhry, 2004. "An Invariance Relation and a Unified Method to Derive Stationary Queue-Length Distributions," Operations Research, INFORMS, vol. 52(5), pages 756-764, October.
    5. Opher Baron & Oded Berman & Dmitry Krass & Jianfu Wang, 2014. "Using Strategic Idleness to Improve Customer Service Experience in Service Networks," Operations Research, INFORMS, vol. 62(1), pages 123-140, February.
    6. John D. C. Little, 2011. "OR FORUM---Little's Law as Viewed on Its 50th Anniversary," Operations Research, INFORMS, vol. 59(3), pages 536-549, June.
    7. Hossein Abouee-Mehrizi & Opher Baron & Oded Berman, 2014. "Exact Analysis of Capacitated Two-Echelon Inventory Systems with Priorities," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 561-577, October.
    8. George C. Mytalas & Michael A. Zazanis, 2022. "Service with a queue and a random capacity cart: random processing batches and E-limited policies," Annals of Operations Research, Springer, vol. 317(1), pages 147-178, October.
    9. Gérard Hébuterne & Catherine Rosenberg, 1999. "Arrival and departure state distributions in the general bulk‐service queue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 107-118, February.
    10. Hossein Abouee-Mehrizi & Opher Baron, 2016. "State-dependent M/G/1 queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 121-148, February.
    11. Bertsimas, Dimitris., 1995. "Transient laws of non-stationary queueing systems and their applications," Working papers 3836-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    12. Kristen Gardner & Rhonda Righter, 2020. "Product forms for FCFS queueing models with arbitrary server-job compatibilities: an overview," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 3-51, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:43:y:1995:i:2:p:298-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.