IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v42y2017i4p1230-1253.html
   My bibliography  Save this article

Quantifying Double McCormick

Author

Listed:
  • Emily Speakman

    (University of Michigan, Ann Arbor, Michigan 48109)

  • Jon Lee

    (University of Michigan, Ann Arbor, Michigan 48109)

Abstract

When using the standard McCormick inequalities twice to convexify trilinear monomials, as is often the practice in modeling and software, there is a choice of which variables to group first. For the important case in which the domain is a nonnegative box, we calculate the volume of the resulting relaxation, as a function of the bounds defining the box. In this manner, we precisely quantify the strength of the different possible relaxations defined by all three groupings, in addition to the trilinear hull itself. As a by-product, we characterize the best double-McCormick relaxation. We wish to emphasize that, in the context of spatial branch and bound for factorable formulations, our results do not only apply to variables in the input formulation. Our results apply to monomials that involve auxiliary variables as well. So, our results apply to the product of any three (possibly complicated) expressions in a formulation.

Suggested Citation

  • Emily Speakman & Jon Lee, 2017. "Quantifying Double McCormick," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1230-1253, November.
  • Handle: RePEc:inm:ormoor:v:42:y:2017:i:4:p:1230-1253
    DOI: 10.1287/moor.2017.0846
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0846
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuan-Ha Vu & Hermann Schichl & Djamila Sam-Haroud, 2009. "Interval propagation and search on directed acyclic graphs for numerical constraint solving," Computational Optimization and Applications, Springer, vol. 45(4), pages 499-531, December.
    2. Miguel A. Lejeune & François Margot, 2016. "Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities," Operations Research, INFORMS, vol. 64(4), pages 939-957, August.
    3. Sonia Cafieri & Jon Lee & Leo Liberti, 2010. "On convex relaxations of quadrilinear terms," Journal of Global Optimization, Springer, vol. 47(4), pages 661-685, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jon Lee & Daphne Skipper & Emily Speakman, 2022. "Gaining or losing perspective," Journal of Global Optimization, Springer, vol. 82(4), pages 835-862, April.
    2. Emily Speakman & Jon Lee, 2018. "On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation," Journal of Global Optimization, Springer, vol. 72(2), pages 129-153, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Goldsztejn & Ferenc Domes & Brice Chevalier, 2014. "First order rejection tests for multiple-objective optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 653-672, April.
    2. Martin Ballerstein & Dennis Michaels, 2014. "Extended formulations for convex envelopes," Journal of Global Optimization, Springer, vol. 60(2), pages 217-238, October.
    3. Xiao Liu & Simge Küçükyavuz, 2018. "A polyhedral study of the static probabilistic lot-sizing problem," Annals of Operations Research, Springer, vol. 261(1), pages 233-254, February.
    4. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    5. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    6. Peter Kirst & Oliver Stein & Paul Steuermann, 2015. "Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 591-616, July.
    7. Achim Wechsung & Joseph Scott & Harry Watson & Paul Barton, 2015. "Reverse propagation of McCormick relaxations," Journal of Global Optimization, Springer, vol. 63(1), pages 1-36, September.
    8. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
    9. D. K. Mohanty & Avik Pradhan & M. P. Biswal, 2020. "Chance constrained programming with some non-normal continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1281-1298, December.
    10. Pete Janes & Alistair Rendell, 2013. "Deterministic global optimization in ab-initio quantum chemistry," Journal of Global Optimization, Springer, vol. 56(2), pages 537-558, June.
    11. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    12. Jean Lasserre & Tung Thanh, 2013. "Convex underestimators of polynomials," Journal of Global Optimization, Springer, vol. 56(1), pages 1-25, May.
    13. Emily Speakman & Jon Lee, 2018. "On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation," Journal of Global Optimization, Springer, vol. 72(2), pages 129-153, October.
    14. Mihály Markót & Hermann Schichl, 2014. "Bound constrained interval global optimization in the COCONUT Environment," Journal of Global Optimization, Springer, vol. 60(4), pages 751-776, December.
    15. Liu, Bingbing & Guo, Xiaolong & Yu, Yugang & Zhou, Qiang, 2019. "Minimizing the total completion time of an urban delivery problem with uncertain assembly time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 163-182.
    16. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    17. Roya Karimi & Jianqiang Cheng & Miguel A. Lejeune, 2021. "A Framework for Solving Chance-Constrained Linear Matrix Inequality Programs," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1015-1036, July.
    18. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    19. Gong, Zaiwu & Guo, Weiwei & Herrera-Viedma, Enrique & Gong, Zejun & Wei, Guo, 2020. "Consistency and consensus modeling of linear uncertain preference relations," European Journal of Operational Research, Elsevier, vol. 283(1), pages 290-307.
    20. Alberto Del Pia & Aida Khajavirad, 2017. "A Polyhedral Study of Binary Polynomial Programs," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 389-410, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:42:y:2017:i:4:p:1230-1253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.