IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v55y2009i3p453-469.html
   My bibliography  Save this article

Persistency Model and Its Applications in Choice Modeling

Author

Listed:
  • Karthik Natarajan

    (Department of Mathematics, National University of Singapore, Singapore 117543 and Singapore-MIT Alliance)

  • Miao Song

    (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Chung-Piaw Teo

    (Department of Decision Sciences, NUS Business School, National University of Singapore, Singapore 117591)

Abstract

Given a discrete maximization problem with a linear objective function where the coefficients are chosen randomly from a distribution, we would like to evaluate the expected optimal value and the marginal distribution of the optimal solution. We call this the persistency problem for a discrete optimization problem under uncertain objective, and the marginal probability mass function of the optimal solution is named the persistence value. In general, this is a difficult problem to solve, even if the distribution of the objective coefficient is well specified. In this paper, we solve a subclass of this problem when the distribution is assumed to belong to the class of distributions defined by given marginal distributions, or given marginal moment conditions. Under this model, we show that the persistency problem maximizing the expected objective value over the set of distributions can be solved via a concave maximization model. The persistency model solved using this formulation can be used to obtain important qualitative insights to the behavior of stochastic discrete optimization problems. We demonstrate how the approach can be used to obtain insights to problems in discrete choice modeling. Using a set of survey data from a transport choice modeling study, we calibrate the random utility model with choice probabilities obtained from the persistency model. Numerical results suggest that our persistency model is capable of obtaining estimates that perform as well, if not better, than classical methods, such as logit and cross-nested logit models. We can also use the persistency model to obtain choice probability estimates for more complex choice problems. We illustrate this on a stochastic knapsack problem, which is essentially a discrete choice problem under budget constraint.

Suggested Citation

  • Karthik Natarajan & Miao Song & Chung-Piaw Teo, 2009. "Persistency Model and Its Applications in Choice Modeling," Management Science, INFORMS, vol. 55(3), pages 453-469, March.
  • Handle: RePEc:inm:ormnsc:v:55:y:2009:i:3:p:453-469
    DOI: 10.1287/mnsc.1080.0951
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1080.0951
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1080.0951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gideon Weiss, 1986. "Stochastic Bounds on Distributions of Optimal Value Functions with Applications to PERT, Network Flows and Reliability," Operations Research, INFORMS, vol. 34(4), pages 595-605, August.
    2. Warren P. Adams & Julie Bowers Lassiter & Hanif D. Sherali, 1998. "Persistency in 0-1 Polynomial Programming," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 359-389, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicole Megow & Rolf H. Möhring & Jens Schulz, 2011. "Decision Support and Optimization in Shutdown and Turnaround Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 189-204, May.
    2. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    3. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    4. Karthik Natarajan & Dongjian Shi & Kim-Chuan Toh, 2014. "A Probabilistic Model for Minmax Regret in Combinatorial Optimization," Operations Research, INFORMS, vol. 62(1), pages 160-181, February.
    5. Vinit Kumar Mishra & Karthik Natarajan & Dhanesh Padmanabhan & Chung-Piaw Teo & Xiaobo Li, 2014. "On Theoretical and Empirical Aspects of Marginal Distribution Choice Models," Management Science, INFORMS, vol. 60(6), pages 1511-1531, June.
    6. Xuan Vinh Doan & Karthik Natarajan, 2012. "On the Complexity of Nonoverlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems," Operations Research, INFORMS, vol. 60(1), pages 138-149, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:3:p:453-469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.