IDEAS home Printed from https://ideas.repec.org/a/ijc/ijcjou/y2019q1a5.html
   My bibliography  Save this article

Missing Disinflation and Missing Inflation: A VAR Perspective

Author

Listed:
  • Elena Bobeica

    (European Central Bank)

  • Marek Jarociński

    (European Central Bank)

Abstract

In the immediate wake of the Great Recession we didn't see the disinflation that most models predicted and, subsequently, we didn't see the inflation they predicted. We show that these puzzles disappear in a vector autoregressive model that properly accounts for domestic and external factors. This model reveals strong spillovers from U.S. to euro-area inflation in the Great Recession. By contrast, domestic factors explain much of the euro-area inflation dynamics during the 2012-14 missing inflation episode. Consequently, euro-area economists and models that excessively focused on the global nature of inflation were liable to miss the contribution of deflationary domestic shocks in this period.

Suggested Citation

  • Elena Bobeica & Marek Jarociński, 2019. "Missing Disinflation and Missing Inflation: A VAR Perspective," International Journal of Central Banking, International Journal of Central Banking, vol. 15(1), pages 199-232, March.
  • Handle: RePEc:ijc:ijcjou:y:2019:q:1:a:5
    as

    Download full text from publisher

    File URL: http://www.ijcb.org/journal/ijcb19q1a5.pdf
    Download Restriction: no

    File URL: http://www.ijcb.org/journal/ijcb19q1a5.htm
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Simon Gilchrist & Raphael Schoenle & Jae Sim & Egon Zakrajšek, 2017. "Inflation Dynamics during the Financial Crisis," American Economic Review, American Economic Association, vol. 107(3), pages 785-823, March.
    2. Francesco Bianchi & Leonardo Melosi, 2017. "Escaping the Great Recession," American Economic Review, American Economic Association, vol. 107(4), pages 1030-1058, April.
    3. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    4. Friedrich, Christian, 2016. "Global inflation dynamics in the post-crisis period: What explains the puzzles?," Economics Letters, Elsevier, vol. 142(C), pages 31-34.
    5. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
    6. Marco Del Negro & Marc P. Giannoni & Frank Schorfheide, 2015. "Inflation in the Great Recession and New Keynesian Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 168-196, January.
    7. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    8. Giancarlo Corsetti & Luca Dedola & Sylvain Leduc, 2014. "The International Dimension Of Productivity And Demand Shocks In The Us Economy," Journal of the European Economic Association, European Economic Association, vol. 12(1), pages 153-176, February.
    9. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    10. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    11. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2015. "Understanding the Great Recession," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 110-167, January.
    12. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    13. Antonio M. Conti & Stefano Neri & Andrea Nobili, 2015. "Why is inflation so low in the euro area?," Temi di discussione (Economic working papers) 1019, Bank of Italy, Economic Research and International Relations Area.
    14. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    15. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    16. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    17. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    18. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    19. Christiane Baumeister & Luca Benati, 2013. "Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound," International Journal of Central Banking, International Journal of Central Banking, vol. 9(2), pages 165-212, June.
    20. Blanchard, Oliver & Cerutti, Eugenio & SUmmers, Lawrence, 2015. "Inflation and Activity - Two Explorations and Their Monetary Policy Implications," Working Paper Series 15-070, Harvard University, John F. Kennedy School of Government.
    21. Haroon Mumtaz & Paolo Surico, 2012. "Evolving International Inflation Dynamics: World And Country-Specific Factors," Journal of the European Economic Association, European Economic Association, vol. 10(4), pages 716-734, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
    2. Stefan Laseen & Marzie Taheri Sanjani, 2016. "Did the Global Financial Crisis Break the U.S. Phillips Curve?," IMF Working Papers 2016/126, International Monetary Fund.
    3. Todd E. Clark & Michael W. McCracken, 2014. "Evaluating Conditional Forecasts from Vector Autoregressions," Working Papers (Old Series) 1413, Federal Reserve Bank of Cleveland.
    4. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    5. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    6. McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
    7. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    8. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    9. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, November.
    10. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    11. George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2019. "Large time‐varying parameter VARs: A nonparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1027-1049, November.
    12. Karol Szafranek & Aleksandra Hałka, 2017. "Determinants of low inflation in an emerging, small open economy. A comparison of aggregated and disaggregated approaches," NBP Working Papers 267, Narodowy Bank Polski, Economic Research Department.
    13. Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016. "Forecasting China's economic growth and inflation," China Economic Review, Elsevier, vol. 41(C), pages 46-61.
    14. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    16. Hanck, Christoph & Prüser, Jan, 2016. "House prices and interest rates: Bayesian evidence from Germany," Ruhr Economic Papers 620, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Carriero, Andrea & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2015. "Macroeconomic information, structural change, and the prediction of fiscal aggregates," International Journal of Forecasting, Elsevier, vol. 31(2), pages 325-348.
    18. Caruso, Alberto & Reichlin, Lucrezia & Ricco, Giovanni, 2019. "Financial and fiscal interaction in the Euro Area crisis: This time was different," European Economic Review, Elsevier, vol. 119(C), pages 333-355.
    19. Julius Stakenas, 2018. "Slicing up inflation: analysis and forecasting of Lithuanian inflation components," Bank of Lithuania Working Paper Series 56, Bank of Lithuania.
    20. Jesús Crespo Cuaresma & Martin Feldkircher & Florian Huber, 2016. "Forecasting with Global Vector Autoregressive Models: a Bayesian Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1371-1391, November.

    More about this item

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • F44 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Business Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijc:ijcjou:y:2019:q:1:a:5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bank for International Settlements). General contact details of provider: https://www.ijcb.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.