IDEAS home Printed from https://ideas.repec.org/a/igg/jisss0/v11y2019i1p68-89.html
   My bibliography  Save this article

Visual Analytics Adoption in Business Enterprises: An Integrated Model of Technology Acceptance and Task-Technology Fit

Author

Listed:
  • Mohammad Daradkeh

    (Department of Management Information Systems, Faculty of Information Technology and Computer Science, Yarmouk University, Irbid, Jordan)

Abstract

Visual analytics is increasingly being recognized as a source of competitive advantage. Yet, limited research has examined the factors deriving it organizational adoption. By integrating the technology acceptance model (TAM) with the task-technology fit (TTF) model, this research developed a model for visual analytics adoption in business enterprises. To test the research model, data was collected through a questionnaire survey distributed to 400 business professionals working in a variety of industries in Jordan. Collected data were tested and analyzed using structural equation modeling (SEM) technique. Findings of this research confirmed the applicability of the integrated TAM/TTF model to explain the key factors that affect the adoption of visual analytics systems for work-related tasks. Specifically, the results of this research demonstrated that the task, technology, and user characteristics are fundamental and influential antecedents of TTF, which in turn has a significant positive effect on the perceived usefulness and perceived ease of use of visual analytics systems. Additionally, there are significant positive effects from perceived usefulness and perceived ease of use toward users' intention to adopt visual analytics systems, and a firm relationship between perceived ease of use and perceived usefulness of visual analytics systems. Together all these constructs explain 59.9% of the variance in user's intention to adopt visual analytics systems at the workplace. Findings of this research provide several important implications for research and practice, and thus should help in the design and development of more user-accepted visual analytics systems and applications.

Suggested Citation

  • Mohammad Daradkeh, 2019. "Visual Analytics Adoption in Business Enterprises: An Integrated Model of Technology Acceptance and Task-Technology Fit," International Journal of Information Systems in the Service Sector (IJISSS), IGI Global, vol. 11(1), pages 68-89, January.
  • Handle: RePEc:igg:jisss0:v:11:y:2019:i:1:p:68-89
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISSS.2019010105
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kayabay, Kerem & Gökalp, Mert Onuralp & Gökalp, Ebru & Erhan Eren, P. & Koçyiğit, Altan, 2022. "Data science roadmapping: An architectural framework for facilitating transformation towards a data-driven organization," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jisss0:v:11:y:2019:i:1:p:68-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.