IDEAS home Printed from https://ideas.repec.org/a/igg/jamc00/v11y2020i4p91-113.html
   My bibliography  Save this article

A New Multi-Objective Firework Algorithm to Solve the Multimodal Planning Network Problem

Author

Listed:
  • Mouna Gargouri Mnif

    (ENSI, University of Manouba, Manouba, Tunisia)

  • Sadok Bouamama

    (Higher College of Technology, HCT, DMC, Dubai, UAE)

Abstract

This article introduces a new approach called multi-objective firework algorithm (MFWA). The proposed approach allows for solving the multimodal transportation network problem (MTNP). The main goal is to develop a decision system that optimizes and determines the planning network of the multimodal transportation (PNMT) problem. The optimization involves reaching the efficient transport mode and multimodal path, in order to move from one country to another while satisfying the set of objectives. Moreover, the firework algorithm has distinct advantages in solving complex optimization problems and in obtaining a solution by a distributed and oriented research system. This approach presents a search way, which is different from the swarm intelligence-based stochastic search technique. For each firework, the process starts by exploding a firework in the sky. The search space is filled with a shower of sparks to get diversity solutions. This new approach proves their efficacy in solving the multi-objective problem, which is shown by the experimental results.

Suggested Citation

  • Mouna Gargouri Mnif & Sadok Bouamama, 2020. "A New Multi-Objective Firework Algorithm to Solve the Multimodal Planning Network Problem," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 11(4), pages 91-113, October.
  • Handle: RePEc:igg:jamc00:v:11:y:2020:i:4:p:91-113
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAMC.2020100105
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jiaqi & Han, Xin & Li, Li & Jia, Shun & Jiang, Zhigang & Duan, Xiangmin & Lai, Kee-hung & Cai, Wei, 2023. "Multi-objective optimisation for energy saving and high efficiency production oriented multidirectional turning based on improved fireworks algorithm considering energy, efficiency and quality," Energy, Elsevier, vol. 284(C).
    2. Jarosław Ziółkowski & Aleksandra Lęgas & Elżbieta Szymczyk & Jerzy Małachowski & Mateusz Oszczypała & Joanna Szkutnik-Rogoż, 2022. "Optimization of the Delivery Time within the Distribution Network, Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere," Energies, MDPI, vol. 15(14), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jamc00:v:11:y:2020:i:4:p:91-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.