IDEAS home Printed from https://ideas.repec.org/a/ids/ijgeni/v21y2004i4p329-351.html
   My bibliography  Save this article

Life cycle costing of a self-sufficient solar-hydrogen system

Author

Listed:
  • P.C. Ghosh
  • N.K. Bansal
  • B. Emonts
  • D. Stolten

Abstract

In a renewable energy-based system, energy storage must match the energy demand with supply. Usually a lead-acid battery is utilised as a short-term energy buffer. A system, which has a combination of an electrolyser and a high-pressure hydrogen tank for long-term energy storage, is considered in this paper. The cost intensive components are sized considering the least cost and by performing a life cycle costing of the system. The optimum battery capacity obtained is 19 kWh, which is equivalent to 2.2 days of autonomy. At present, energy storage cost in the long-term storage is found 2.16 per kWh whereas the cost goes down to 0.92 per kWh when the target cost of the fuel cell and the electrolyser is considered. Around 15–20% of the demand is supplied by the long-term storage.

Suggested Citation

  • P.C. Ghosh & N.K. Bansal & B. Emonts & D. Stolten, 2004. "Life cycle costing of a self-sufficient solar-hydrogen system," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 21(4), pages 329-351.
  • Handle: RePEc:ids:ijgeni:v:21:y:2004:i:4:p:329-351
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=5825
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raj, Arun S. & Ghosh, Prakash C., 2012. "Standalone PV-diesel system vs. PV-H2 system: An economic analysis," Energy, Elsevier, vol. 42(1), pages 270-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijgeni:v:21:y:2004:i:4:p:329-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=13 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.