IDEAS home Printed from https://ideas.repec.org/a/ids/ijetpo/v5y2007i1p1-16.html
   My bibliography  Save this article

Combined Heat and Power (CHP) essentials

Author

Listed:
  • Aviel Verbruggen

Abstract

'CHP essentials' introduces the concept of power and heat 'production possibility sets', starting at the cradle of CHP, i.e., the thermal power generation plant. The latter always occasions 'fatal' heat that is either recovered (the 'merit' of CHP) or wasted (condensing). This split paves the way to defining the production possibility sets of CHP plants, shown for steam turbines, internal combustion engines and gas turbines as main CHP technologies. Three indicators are widely used to monitor CHP performance: the overall conversion efficiency (quantity indicator), the (mostly ill-defined) power to heat ratio (quality indicator), the 'quality norm' advertised by the EU Directive 2004/8/EC. The paper levels the field for discussing the crucial issue of identifying and quantifying CHP activity.

Suggested Citation

  • Aviel Verbruggen, 2007. "Combined Heat and Power (CHP) essentials," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 5(1), pages 1-16.
  • Handle: RePEc:ids:ijetpo:v:5:y:2007:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=12568
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    2. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2016. "Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios," Energy, Elsevier, vol. 94(C), pages 273-291.
    3. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling," Energy, Elsevier, vol. 74(C), pages 109-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetpo:v:5:y:2007:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=12 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.