IDEAS home Printed from https://ideas.repec.org/a/iad/wpaper/0223.html
   My bibliography  Save this article

Optimización de Carteras de Renta Variable con Aprendizaje Automático

Author

Listed:
  • Alejandro Vargas Sánchez

    (Universidad Privada Boliviana)

  • André Nicolas Monje Prudencio

    (Universidad Privada Boliviana)

Abstract

Esta investigación propone aplicar técnicas de Aprendizaje Automático en la gestión de carteras de inversión de renta variable, con el fin de mejorar el proceso de estructuración de portafolios y generar resultados empíricos óptimos en comparación con técnicas tradicionales. Se utiliza la técnica de Clustering Affinity Propagation, complementada con el algoritmo Graphical Lasso y Multi-Dimensional Scaling, para identificar patrones de comportamiento similar entre empresas y optimizar la composición del portafolio.

Suggested Citation

  • Alejandro Vargas Sánchez & André Nicolas Monje Prudencio, 2023. "Optimización de Carteras de Renta Variable con Aprendizaje Automático," Investigación & Desarrollo, Universidad Privada Boliviana, vol. 23(2), pages 23-45.
  • Handle: RePEc:iad:wpaper:0223
    DOI: 10.23881/idupbo.023.2-2e
    as

    Download full text from publisher

    File URL: https://www1.upb.edu/revista-investigacion-desarrollo/index.php/id/article/view/283/767
    Download Restriction: no

    File URL: https://libkey.io/10.23881/idupbo.023.2-2e?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iad:wpaper:0223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Nogales C. (email available below). General contact details of provider: https://edirc.repec.org/data/ciupbbo.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.