IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9688043.html
   My bibliography  Save this article

Maintenance Optimization of a 2-Component Swappable Series System Using the Delay-Time Concept

Author

Listed:
  • Liying wang
  • Wenhua Zhang

Abstract

In the 2-component swappable series system, the two components undertake tasks with different loads and degrade at different speeds. To prolong the lifetime of the series system, these two components are swapped in the operating process of the system in practice. This is common in the maintenance of duplexing steelmaking systems, tires of vehicles, and steel rails in curves. The failure process of each component in the system is modeled based on a two-stage delay-time concept and divided into two stages: normal and defective. Inspections are carried out periodically on the system. Two components may be swapped once at an inspection time that the two components are both in the normal stage. Due to the increase or decrease of loads, normal and defective time distributions after the swap are assumed to be different from those prior to the swap. The system is subjected to failure, inspection, and age-based renewals. The number of inspections over the maximum usage time of the system and the swap time are optimized jointly by minimizing the expected cost per unit time in a long run. A numerical example is presented to demonstrate the model.

Suggested Citation

  • Liying wang & Wenhua Zhang, 2021. "Maintenance Optimization of a 2-Component Swappable Series System Using the Delay-Time Concept," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, July.
  • Handle: RePEc:hin:jnlmpe:9688043
    DOI: 10.1155/2021/9688043
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9688043.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9688043.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9688043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9688043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.