IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7509586.html
   My bibliography  Save this article

A Line Planning Approach for High-Speed Rail Networks with Time-Dependent Demand and Capacity Constraints

Author

Listed:
  • Huanyin Su
  • Wencong Tao
  • Xinlei Hu

Abstract

In high-speed rail networks, trains are operated with high speeds and high frequencies, which can satisfy passenger demand with different expected departure times. Given time-dependent demand, this paper proposes a line planning approach with capacity constraints for high-speed rail networks. In this paper, a bilevel optimization model is formulated and the constraints include track section capacity per unit time, train seat capacity, and the gap between the number of starting trains and that of ending trains at a station. In the upper level, the objective is to minimize train operational cost and passenger travel cost, and the decision variables include the line of each train, carriage composition of each train, train stop patterns, train start times, and train arrival and departure times at stops in the line plan. In the lower level, a schedule-based passenger assignment method, which assigns time-varying demand on trains with seat capacity constraints by simulating the ticket-booking process, is used to evaluate the line plan obtained in the upper level. A simulated annealing algorithm is developed to solve the model in which some strategies are designed to search for neighborhood solutions, including reducing train carriages, deleting trains, adding trains, increasing train carriages, and adjusting train start times. Finally, an application to the Chinese high-speed rail network is presented. The numerical results show that (i) the average time deviations between the expected departure times and the actual boarding times of passengers are within 30 min, (ii) the unserved passengers are less than 200, and (iii) the average load factors of trains are about 70%. Hence, line plan solutions meet time-dependent demand well and satisfy the capacity constraints for high-speed rail networks.

Suggested Citation

  • Huanyin Su & Wencong Tao & Xinlei Hu, 2019. "A Line Planning Approach for High-Speed Rail Networks with Time-Dependent Demand and Capacity Constraints," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-18, March.
  • Handle: RePEc:hin:jnlmpe:7509586
    DOI: 10.1155/2019/7509586
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7509586.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/7509586.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7509586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenliang Zhou & Jing Kang & Jin Qin & Sha Li & Yu Huang, 2022. "Robust Optimization of High-Speed Railway Train Plan Based on Multiple Demand Scenarios," Mathematics, MDPI, vol. 10(8), pages 1-26, April.
    2. Wennan Song & Di Liu & Wenyu Rong, 2022. "Optimization of Passenger-like Container Train Running Plan Considering Empty Container Dispatch," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    3. Huanyin Su & Shuting Peng & Shanglin Mo & Kaixin Wu, 2022. "Neural Network-Based Hybrid Forecasting Models for Time-Varying Passenger Flow of Intercity High-Speed Railways," Mathematics, MDPI, vol. 10(23), pages 1-21, December.
    4. Wenliang Zhou & Xiang Li & Xin Shi, 2023. "Joint Optimization of Time-Dependent Line Planning and Differential Pricing with Passenger Train Choice in High-Speed Railway Networks," Mathematics, MDPI, vol. 11(6), pages 1-28, March.
    5. Wenliang Zhou & Mehdi Oldache, 2021. "Integrated Optimization of Line Planning, Timetabling and Rolling Stock Allocation for Urban Railway Lines," Sustainability, MDPI, vol. 13(23), pages 1-32, November.
    6. Wenliang Zhou & Yujun Huang & Naijie Chai & Bo Li & Xiang Li, 2022. "A Line Planning Optimization Model for High-Speed Railway Network Merging Newly-Built Railway Lines," Mathematics, MDPI, vol. 10(17), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7509586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.