IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/731734.html
   My bibliography  Save this article

Imaging-Duration Embedded Dynamic Scheduling of Earth Observation Satellites for Emergent Events

Author

Listed:
  • Xiaonan Niu
  • Hong Tang
  • Lixin Wu
  • Run Deng
  • Xuejun Zhai

Abstract

We present novel two-stage dynamic scheduling of earth observation satellites to provide emergency response by making full use of the duration of the imaging task execution. In the first stage, the multiobjective genetic algorithm NSGA-II is used to produce an optimal satellite imaging schedule schema, which is robust to dynamic adjustment as possible emergent events occur in the future. In the second stage, when certain emergent events do occur, a dynamic adjusting heuristic algorithm (CTM-DAHA) is applied to arrange new tasks into the robust imaging schedule. Different from the existing dynamic scheduling methods, the imaging duration is embedded in the two stages to make full use of current satellite resources. In the stage of robust satellite scheduling, total task execution time is used as a robust indicator to obtain a satellite schedule with less imaging time. In other words, more imaging time is preserved for future emergent events. In the stage of dynamic adjustment, a compact task merging strategy is applied to combine both of existing tasks and emergency tasks into a composite task with least imaging time. Simulated experiments indicate that the proposed method can produce a more robust and effective satellite imaging schedule.

Suggested Citation

  • Xiaonan Niu & Hong Tang & Lixin Wu & Run Deng & Xuejun Zhai, 2015. "Imaging-Duration Embedded Dynamic Scheduling of Earth Observation Satellites for Emergent Events," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-31, June.
  • Handle: RePEc:hin:jnlmpe:731734
    DOI: 10.1155/2015/731734
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/731734.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/731734.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/731734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:731734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.