IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6644033.html
   My bibliography  Save this article

Super-Twisting Sliding Mode Control Law Design for Attitude Tracking Task of a Spacecraft via Reaction Wheels

Author

Listed:
  • Yang-Rui Li
  • Chao-Chung Peng

Abstract

The attitude control has been recognized as one of the most important research topics for spacecraft. If the desired attitude trajectory cannot be tracked precisely, it may cause mission failures. In the real space mission environment, the unknown external perturbations, for example, atmospheric drag and solar radiation, should be taken into consideration. Such external perturbations could deviate the precision of the spacecraft orientation and thereby lead to a mission failure. Therefore, in this paper, a quaternion-based super-twisting sliding mode robust control law for the spacecraft attitude tracking is developed. The finite time stability based on the formulation of the linear matrix inequality (LMI) is also provided. To avoid losing the control degree of freedom due to the certain actuator fault, a redundant reaction wheels configuration is adopted. The actuators distribution associated force distribution matrix (FDM) is analyzed in detail. Finally, the reference tangent-normal-binormal (TNB) command generation strategy is implemented for simulating the scenario of the space mission. Finally, the simulation results reveal that the spacecraft can achieve the desired attitude trajectory tracking demands in the presence of the time-varying external disturbances.

Suggested Citation

  • Yang-Rui Li & Chao-Chung Peng, 2021. "Super-Twisting Sliding Mode Control Law Design for Attitude Tracking Task of a Spacecraft via Reaction Wheels," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, March.
  • Handle: RePEc:hin:jnlmpe:6644033
    DOI: 10.1155/2021/6644033
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6644033.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6644033.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6644033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amine, Hartani Mohamed & Aissa, Benhammou & Rezk, Hegazy & Messaoud, Hamouda & Othmane, Adbdelkhalek & Saad, Mekhilef & Abdelkareem, Mohammad Ali, 2023. "Enhancing hybrid energy storage systems with advanced low-pass filtration and frequency decoupling for optimal power allocation and reliability of cluster of DC-microgrids," Energy, Elsevier, vol. 282(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6644033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.