IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1795486.html
   My bibliography  Save this article

A Hybrid Method for Ultrashort-Term Wind Power Prediction considering Meteorological Features and Seasonal Information

Author

Listed:
  • Baobin Zhou
  • Che Liu
  • Jianjing Li
  • Bo Sun
  • Jun Yang

Abstract

High-precision wind power prediction is important for the planning, economics, and security maintenance of a power grid. Meteorological features and seasonal information are strongly related to wind power prediction. This paper proposes a hybrid method for ultrashort-term wind power prediction considering meteorological features (wind direction, wind speed, temperature, atmospheric pressure, and humidity) and seasonal information. The wind power data are decomposed into stationary subsequences using the ensemble empirical mode decomposition (EEMD). The principal component analysis (PCA) is used to reduce the redundant meteorological features and the algorithm complexity. With the stationary subsequences and extracted meteorological features data as inputs, the long short-term memory (LSTM) network is used to complete the wind power prediction. Finally, the seasonal autoregressive integrated moving average (SARIMA) is innovatively used to fit seasonal features (quarterly and monthly) of wind power and reconstruct the prediction results of LSTM. The proposed method is used to predict 15-minute wind power. In this study, three datasets were collected from a windfarm in Laizhou to validate the prediction performance of the proposed method. The experimental results showed that the prediction accuracy was significantly improved when meteorological features were considered and further improved with seasonal correction.

Suggested Citation

  • Baobin Zhou & Che Liu & Jianjing Li & Bo Sun & Jun Yang, 2020. "A Hybrid Method for Ultrashort-Term Wind Power Prediction considering Meteorological Features and Seasonal Information," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, September.
  • Handle: RePEc:hin:jnlmpe:1795486
    DOI: 10.1155/2020/1795486
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1795486.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1795486.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/1795486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoxun, Zhu & Zixu, Xu & Yu, Wang & Xiaoxia, Gao & Xinyu, Hang & Hongkun, Lu & Ruizhang, Liu & Yao, Chen & Huaxin, Liu, 2023. "Research on wind speed behavior prediction method based on multi-feature and multi-scale integrated learning," Energy, Elsevier, vol. 263(PA).
    2. Yaqi Wang & Renzhou Gui, 2022. "A Hybrid Model for GRU Ultra-Short-Term Wind Speed Prediction Based on Tsfresh and Sparse PCA," Energies, MDPI, vol. 15(20), pages 1-20, October.
    3. Paweł Piotrowski & Marcin Kopyt & Dariusz Baczyński & Sylwester Robak & Tomasz Gulczyński, 2021. "Hybrid and Ensemble Methods of Two Days Ahead Forecasts of Electric Energy Production in a Small Wind Turbine," Energies, MDPI, vol. 14(5), pages 1-25, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1795486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.