IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/610382.html
   My bibliography  Save this article

Cooperative and Competitive Dynamics Model for Information Propagation in Online Social Networks

Author

Listed:
  • Yaming Zhang
  • Chaosheng Tang
  • Li Weigang

Abstract

Traditional empirical models of propagation consider individual contagion as an independent process, thus spreading in isolation manner. In this paper, we study how different contagions interact with each other as they spread through the network in order to propose an alternative dynamics model for information propagation. The proposed model is a novel combination of Lotka-Volterra cooperative model and competitive model. It is assumed that the interaction of one message on another is flexible instead of always negative. We prove that the impact of competition depends on the critical speed of the messages. By analyzing the differential equations, one or two stable equilibrium points can be found under certain conditions. Simulation results not only show the correctness of our theoretical analyses but also provide a more attractive conclusion. Different types of messages could coexist in the condition of high critical speed and intense competitive environment, or vice versa. The messages will benefit from the high critical speed when they are both competitive, and adopting a Tit-for-Tat strategy is necessary during the process of information propagation.

Suggested Citation

  • Yaming Zhang & Chaosheng Tang & Li Weigang, 2014. "Cooperative and Competitive Dynamics Model for Information Propagation in Online Social Networks," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-12, July.
  • Handle: RePEc:hin:jnljam:610382
    DOI: 10.1155/2014/610382
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2014/610382.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2014/610382.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/610382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jing & Wang, Xiaoli & Xie, Yanxi & Wang, Meihua, 2022. "Research on multi-topic network public opinion propagation model with time delay in emergencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:610382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.