IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/406757.html
   My bibliography  Save this article

On the Definitions of Nabla Fractional Operators

Author

Listed:
  • Thabet Abdeljawad
  • Ferhan M. Atici

Abstract

We show that two recent definitions of discrete nabla fractional sum operators are related. Obtaining such a relation between two operators allows one to prove basic properties of the one operator by using the known properties of the other. We illustrate this idea with proving power rule and commutative property of discrete fractional sum operators. We also introduce and prove summation by parts formulas for the right and left fractional sum and difference operators, where we employ the Riemann-Liouville definition of the fractional difference. We formalize initial value problems for nonlinear fractional difference equations as an application of our findings. An alternative definition for the nabla right fractional difference operator is also introduced.

Suggested Citation

  • Thabet Abdeljawad & Ferhan M. Atici, 2012. "On the Definitions of Nabla Fractional Operators," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-13, October.
  • Handle: RePEc:hin:jnlaaa:406757
    DOI: 10.1155/2012/406757
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/406757.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/406757.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/406757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ruoxia & Cao, Jinde & Xue, Changfeng & Manivannan, R., 2021. "Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    2. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    3. Pshtiwan Othman Mohammed & Hari Mohan Srivastava & Dumitru Baleanu & Rashid Jan & Khadijah M. Abualnaja, 2022. "Monotonicity Results for Nabla Riemann–Liouville Fractional Differences," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    4. Rashid, Saima & Sultana, Sobia & Jarad, Fahd & Jafari, Hossein & Hamed, Y.S., 2021. "More efficient estimates via ℏ-discrete fractional calculus theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Baogui Xin & Wei Peng & Yekyung Kwon, 2019. "A fractional-order difference Cournot duopoly game with long memory," Papers 1903.04305, arXiv.org.
    6. Rashid, Saima & Sultana, Sobia & Hammouch, Zakia & Jarad, Fahd & Hamed, Y.S., 2021. "Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Pshtiwan Othman Mohammed & Thabet Abdeljawad & Faraidun Kadir Hamasalh, 2021. "On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis," Mathematics, MDPI, vol. 9(11), pages 1-17, June.
    8. Jiraporn Reunsumrit & Thanin Sitthiwirattham, 2020. "On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations," Mathematics, MDPI, vol. 8(4), pages 1-13, March.
    9. Suwan, Iyad & Abdeljawad, Thabet & Jarad, Fahd, 2018. "Monotonicity analysis for nabla h-discrete fractional Atangana–Baleanu differences," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 50-59.
    10. Gu, Yajuan & Wang, Hu & Yu, Yongguang, 2020. "Synchronization for fractional-order discrete-time neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    11. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    12. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Yao, Yu & Wu, Li-Bing, 2022. "Backstepping control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:406757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.