IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/695948.html
   My bibliography  Save this article

Cooperative Passenger Inflow Control in Urban Mass Transit Network with Constraint on Capacity of Station

Author

Listed:
  • Jianyuan Guo
  • Limin Jia
  • Yong Qin
  • Huijuan Zhou

Abstract

In urban mass transit network, when passengers’ trip demands exceed capacity of transport, the numbers of passengers accumulating in the original or transfer stations always exceed the safety limitation of those stations. It is necessary to control passenger inflow of stations to assure the safety of stations and the efficiency of passengers. We define time of delay (TD) to evaluate inflow control solutions, which is the sum of waiting time outside of stations caused by inflow control and extra waiting time on platform waiting for next coming train because of insufficient capacity of first coming train. We build a model about cooperative passenger inflow control in the whole network (CPICN) with constraint on capacity of station. The objective of CPICN is to minimize the average time of delay (ATD) and maximum time of delay (MTD). Particle swarm optimization for constrained optimization problem is used to find the optimal solution. The numeral experiments are carried out to prove the feasibility and efficiency of the model proposed in this paper.

Suggested Citation

  • Jianyuan Guo & Limin Jia & Yong Qin & Huijuan Zhou, 2015. "Cooperative Passenger Inflow Control in Urban Mass Transit Network with Constraint on Capacity of Station," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-7, October.
  • Handle: RePEc:hin:jnddns:695948
    DOI: 10.1155/2015/695948
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/695948.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/695948.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/695948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anupriya, & Graham, Daniel J. & Bansal, Prateek & Hörcher, Daniel & Anderson, Richard, 2023. "Optimal congestion control strategies for near-capacity urban metros: Informing intervention via fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    3. Fuquan Pan & Jingshuang Li & Hailiang Tang & Changxi Ma & Lixia Zhang & Xiaoxia Yang, 2023. "Collaborative Determination Method of Metro Train Plan Adjustment and Passenger Flow Control under the Impact of COVID-19," Sustainability, MDPI, vol. 15(2), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:695948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.