IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/432096.html
   My bibliography  Save this article

A Bilevel Programming Model to Optimize Train Operation Based on Satisfaction for an Intercity Rail Line

Author

Listed:
  • Zhipeng Huang
  • Huimin Niu

Abstract

The passenger travel demands for intercity rail lines fluctuate obviously during different time periods, which makes the rail departments unable to establish an even train operation scheme. This paper considers an optimization problem for train operations which respond to passenger travel demands of different periods in intercity rail lines. A satisfactory function of passenger travelling is proposed by means of analyzing the passengers’ travel choice behavior and correlative influencing factors. On this basis, the paper formulates a bilevel programming model which maximizes interests of railway enterprises and travelling satisfaction of each passenger. The trains operation in different periods can be optimized through upper layer planning of the model, while considering the passenger flow distribution problem based on the Wardrop user equilibrium principle in the lower layer planning. Then, a genetic algorithm is designed according to model features for solving the upper laying. The Frank-Wolfe algorithm is used for solving the lower layer planning. Finally, a numerical example is provided to demonstrate the application of the method proposed in this paper.

Suggested Citation

  • Zhipeng Huang & Huimin Niu, 2014. "A Bilevel Programming Model to Optimize Train Operation Based on Satisfaction for an Intercity Rail Line," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-7, February.
  • Handle: RePEc:hin:jnddns:432096
    DOI: 10.1155/2014/432096
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2014/432096.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2014/432096.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/432096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:432096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.