IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/260195.html
   My bibliography  Save this article

Modelling Alcoholism as a Contagious Disease: A Mathematical Model with Awareness Programs and Time Delay

Author

Listed:
  • Shuang-Hong Ma
  • Hai-Feng Huo
  • Xin-You Meng

Abstract

A dynamic alcohol consumption model with awareness programs and time delay is formulated and analyzed. The aim of this model is to capture the effects of awareness programs and time delay in controlling the alcohol problems. We introduce awareness programs by media in the model as a separate class with growth rate of the cumulative density of them being proportional to the number of mortalities induced by heavy drinking. Susceptible population will isolate themselves and avoid contact with the heavy drinkers or become aware of risk of heavy drinking and decline to drink due to such programs. In particular, we incorporate time delay because the nonconsumer population will take a period of time to become an alcohol consumer. We find that the model has two equilibria: one without alcohol problems and one where alcohol problems are endemic in population. The model analysis shows that though awareness programs cannot eradicate alcohol problems, they are effective measures in controlling the alcohol problems. Further, we conclude that the time delay in alcohol consumption habit which develops in susceptible population may result in Hopf bifurcation by increasing the value of time delay. Some numerical simulation results are also given to support our theoretical predictions.

Suggested Citation

  • Shuang-Hong Ma & Hai-Feng Huo & Xin-You Meng, 2015. "Modelling Alcoholism as a Contagious Disease: A Mathematical Model with Awareness Programs and Time Delay," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-13, October.
  • Handle: RePEc:hin:jnddns:260195
    DOI: 10.1155/2015/260195
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/260195.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/260195.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/260195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crokidakis, Nuno & Sigaud, Lucas, 2021. "Modeling the evolution of drinking behavior: A Statistical Physics perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    2. Ain, Qura tul & Khan, Aziz & Ullah, Muhammad Irfan & Alqudah, Manar A. & Abdeljawad, Thabet, 2022. "On fractional impulsive system for methanol detoxification in human body," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:260195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.