IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/7965232.html
   My bibliography  Save this article

Ecoepidemiological Model and Analysis of MSV Disease Transmission Dynamics in Maize Plant

Author

Listed:
  • Haileyesus Tessema Alemneh
  • Oluwole Daniel Makinde
  • David Mwangi Theuri

Abstract

In this paper, an ecoepidemiological deterministic model for the transmission dynamics of maize streak virus (MSV) disease in maize plant is proposed and analysed qualitatively using the stability theory of differential equations.The basic reproduction number with respect to the MSV free equilibrium is obtained using next generation matrix approach. The conditions for local and global asymptotic stability of MSV free and endemic equilibria are established. The model exhibits forward bifurcation and the sensitivity indices of various embedded parameters with respect to the MSV eradication or spreading are determined. Numerical simulation is performed and dispalyed graphically to justify the analytical results.

Suggested Citation

  • Haileyesus Tessema Alemneh & Oluwole Daniel Makinde & David Mwangi Theuri, 2019. "Ecoepidemiological Model and Analysis of MSV Disease Transmission Dynamics in Maize Plant," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2019, pages 1-14, January.
  • Handle: RePEc:hin:jijmms:7965232
    DOI: 10.1155/2019/7965232
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2019/7965232.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2019/7965232.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7965232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benito Chen-Charpentier, 2021. "Stochastic Modeling of Plant Virus Propagation with Biological Control," Mathematics, MDPI, vol. 9(5), pages 1-16, February.
    2. Ameen, Ismail Gad & Baleanu, Dumitru & Ali, Hegagi Mohamed, 2022. "Different strategies to confront maize streak disease based on fractional optimal control formulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Kumar, Pushpendra & Erturk, Vedat Suat & Vellappandi, M. & Trinh, Hieu & Govindaraj, V., 2022. "A study on the maize streak virus epidemic model by using optimized linearization-based predictor-corrector method in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:7965232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.